
Extreme Scale In Situ Analysis

 with

ISC Workshop On In-situ Visualization 2016

Joachim Pouderoux Andrew Bauer

 Julien Jomier Berk Geveci
 Kitware SAS Kitware Inc

System Parameter 2011 “2018” Factor Change

System peak 2 PF 1 EF 500

Power 6 MW ≤20 MW 3

System Memory 0.3 PB 32-64 PB 100-200

Node Performance 0.125 TF 1 TF 10 TF 8-80

Node Concurrency 12 1,000 10,000 83-830

Network BW 1.5 GB/s 100 GB/s 1,000 GB/s 66-660

System Size (nodes) 18,700 1M 100k 50

Total Concurrency 225 K 10 B 100 B 40k-400k

Storage Capacity 15 PB 300-1,000 PB 20-67

I/O BW 0.2 TB/s 20-60 TB/s 100-300

Why In Situ?

2

Simulation Workflow

3

Pre-Process

Create Model

and Mesh

Specify Run

Parameters

Specify Outputs

Simulation

Raw Data

Outputs

Catalyst Image

Outputs

Catalyst Data

Extact Outputs

Post-Process

Access to More Data

Post-processing In situ processing

CTH* simulation with roughly equal data stored at simulation time

Reflections and shadows added in post-processing for both examples

Dump
Times

4
*A multi-material, large deformation, strong shock wave, solid mechanics code

Reduced File Size

Rotorcraft simulation output

size for a single time step

and 32 MPI rank run

• Full data set – 448 MB

• Surface of blades – 2.8 MB

• Image – 71 KB

HPCMP CREATE-AVTM Helios (Army AFDD/AMRDEC) simulation

5

Small Run-Time Overhead

0

5

10

15

20

25

16 32 64 128 256 512 1024 2048

S
e

c
o

n
d

s
 p

e
r

T
im

e
 S

te
p

Cores

data generation annotations
write render
cell to point contour
XRAGE

XRAGE (LANL) simulation

6

What is ParaView Catalyst?

• A set of in situ data analysis and visualization

capabilities developed in response to current and near

future data analysis challenges

– Light-weight version of the ParaView server library that is

designed to be directly embedded into parallel simulation

codes

– Available since 2010, open source – comes with ParaView

• Brings all ParaView pipeline mechanics to the

simulation code

– Data processing through filters

– Data writers

– Rendering and compositing

– C/C++/Fortran & Python examples

– Editions: only needed features in Catalyst library

7

Python Wrappings

 ParaView Server
Parallel Abstractions and Controls

Core Visualization Algorithms

Simulation

Statistics Rendered Images

Catalyst Outputs

Series Data

Polygonal Output

with Field Data

8

Requirements

 Simulation Developers

• Pass necessary simulation

data to Catalyst

• Need sufficient knowledge
of both codes
– VTK for grids and field data

– ParaView Catalyst libraries

 Simulation Users

• Knowledge of ParaView as
a post-processing/analysis
tool
– Basic interaction with GUI

Catalyst script generator
plugin

– Incremental knowledge
increase to use the in situ
tools from basic ParaView
use

• Programming knowledge
can be useful to extend the
tools

9

Interactions

• Typically only 3 calls between
simulation code and adaptor

– Initialize()

• MPI communicator (optional)

• Add analysis scripts

– CoProcess()

• Does the work (potentially)

– Finalize()

• Information provided by solver to
adaptor

– Time, time step, force output

– Grids and fields

• Information provided by adaptor

– Pipelines to execute

– Time, time step, force output

– Grid and fields when needed

– MPI communicator

• Information provided by Catalyst

– If co-processing needs to be done

– What grids and fields are needed

• User data can be shared both ways

Solver Adaptor

10

Adaptor Overview

• Creates VTK data objects representing

simulation data
– Deep copy, Shallow copy – Zero copy API

• Creates Catalyst pipelines
– Information on how to process VTK data objects to

get desired output

• Typical adaptors
– Higher level interfaces to Catalyst to simplify

vtkCPProcessor: vtkCPAdaptorAPI, CAdaptorAPI

(wrapped in Fortran)
– http://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf

Adaptor

11

http://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf

Information Flow

Initialization

– Information for creating pipelines

Solver Adaptor

12

Information Flow

After simulation completes time step update

– Time, Time Step, Force Output flag

– Information for creating grid and field information

Solver Adaptor

Pipeline

Pipeline

Pipeline

13

Information Flow

After simulation completes time step update

– Time, Time Step, Force Output flag are

passed to each pipeline

Solver Adaptor

Pipeline

Pipeline

Pipeline

14

Information Flow

After simulation completes time step update

– Pipelines return if they need to be executed/updated

Solver Adaptor

Pipeline

Pipeline

Pipeline

15

Information Flow

After simulation completes time step update

– If any pipeline needs to be executed

• Adaptor populates VTK objects that represent grids

and fields in simulation output

Solver Adaptor

Pipeline

Pipeline

Pipeline

16

Information Flow

After simulation completes time step update

– Pass VTK data object representing Grids and Fields

to pipelines that need to execute/update

Solver Adaptor

Pipeline

Pipeline

Pipeline

17

Information Flow

After simulation completes time step update

– Pipelines execute and output desired information

Solver Adaptor

Pipeline

Pipeline

Pipeline

18

Catalyst Pipelines

• Hard-coded pipelines

– Users don’t need ParaView knowledge in order to use Catalyst,

just how to specify Catalyst output through simulation input deck

– Developers provide input deck options to specify hard-coded

pipelines

– Can be done in Python or C++

• Python scripts generated by the ParaView plugin

– Offer better control to the user

– Catalyst User’s Guide for detailed instructions
http://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf

– Python script description
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/

 19

http://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf
http://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf
http://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/
https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/

Preparing In Situ Processing Pipelines

• Create ParaView pipelines with GUI and export

script for Catalyst

– Load “CatalystScriptGeneratorPlugin”

– Start with a representative dataset from the simulation

(eg. Step 0 on rank 0)

– Create analysis and visualization pipelines

– Specify extra pipeline information to tell what to

output during simulation run

• Add in data extract writers

• Create screenshots to output

• Both require file name and write frequency

20

Catalyst Plugin Features

21

Live In Situ

• Provides functionality for

interacting with simulation data

during simulation run

• Connect ParaView client to a

running simulation with Live

Visualization enabled

• Only transfer requested data from

simulation nodes to client/data

server nodes - then perform

“local” processing

• Debugging features

– Pause

– Breakpoints
22

In Transit/Hybrid Workflow

• Some analysis and viz operations may not work

efficiently at the same parallelism that the

simulation code is run at

– Solution: run these things on a smaller set of

processes somewhere “else”

– Trying Cori@NERSC Burst Buffer for transport

mechanism

448 MB/TS 2.8 MB/TS 71 KB/TS

*Image size independent of data set size 23

Going to Exascale

PHASTA running with 256K MPI ranks
Performed on MIRA@Argonne (IBM BG/Q) - 2014

24

Going to Exascale 2

• PHASTA run with 1M MPI ranks on

MIRA@Argonne (IBM BG/Q) - 2016

• Catalyst edition for reduced library size

• In situ times

– 1.9 second initialization

– 5.6 seconds/per slice operation and image output

M. Rasquin, C. Smith, K. Chitale, S. Seol, B. Matthews, J. Martin, O. Sahni, R. Loy, M. Shephard, and K. Jansen,

“Scalable fully implicit finite element flow solver with application to high-fidelity flow control simulations

on a realistic wing design,” Computing in Science and Engineering, vol. 16, no. 6, pp. 13–21, 2014.

25

Future Work
• At scale file IO for data extracts

– Reduced IO amount but increased complexity due to

non-load-balanced and dynamic output size and location

• In transit workflows (Burst Buffers, ADIOS, etc)

• Catalyst editions with even smaller library sizes

• Advanced Cinema options

• Parallelism appropriate with simulation code’s

parallelism (e.g. MPI, OpenMP, CUDA, threads,

VTK-m, vtkSMPTools, etc.)

• Steering features

• New SENSEI framework – SC16 paper

 26

Code Saturne

EDF

Phasta

UC-Boulder
Helios

Army Aeroflighdynamics Directorate

Thanks for your attention

www.paraview.org/in-situ

http://www.paraview.org/in-situ
http://www.paraview.org/in-situ
http://www.paraview.org/in-situ

Acknowledgments

This work was mainly supported by

Sandia National Laboratories

Los Alamos National Laboratory

Army SBIRs

The ELCI and AVIDO projects
French FSN (“Fond pour la Société Numérique”) cooperative

projects that associates academic and industrial partners to design

 and provide software environment for very high performance computing

