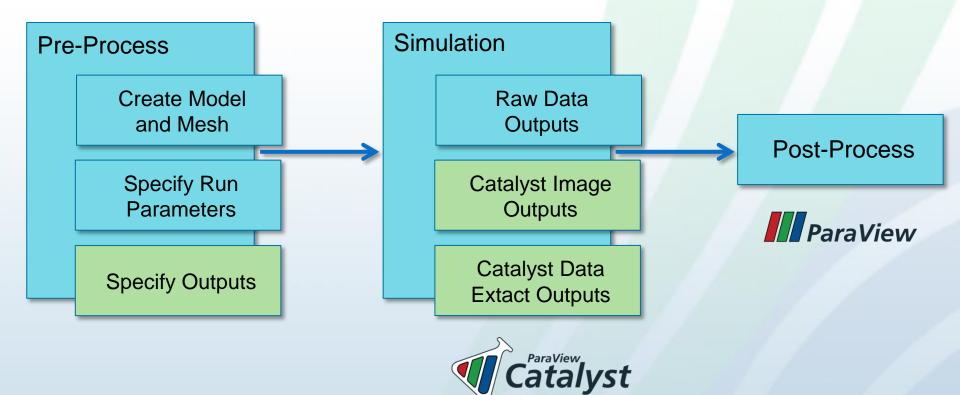


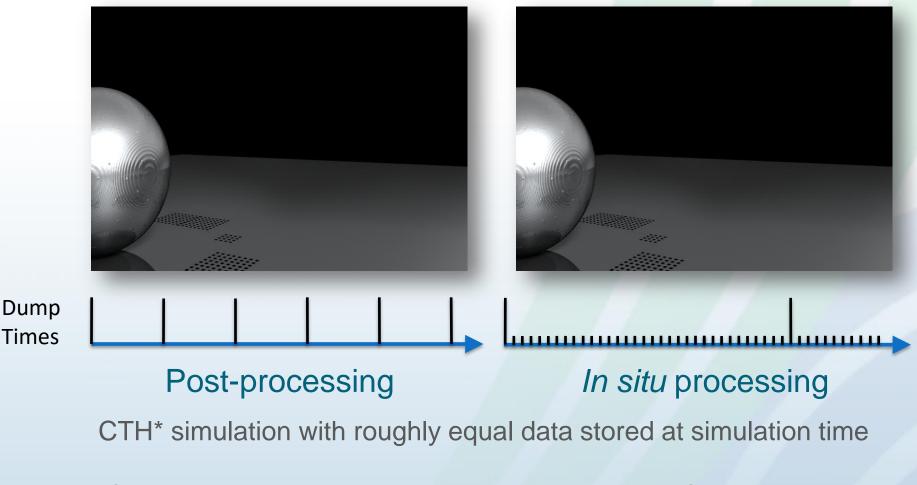
Extreme Scale In Situ Analysis with Catalyst

Joachim PouderouxAndrew BauerJulien JomierBerk GeveciKitware SASKitware Inc


ISC Workshop On In-situ Visualization 2016

Why In Situ?

-	$\Lambda 18$	
		The second
Scien	tific Discove	ry
at the	Exascale:	CS-SA
	DOE ASCR 2011 Workshop on anagement, Analysis, and Visualiza	tion
February 2011 Houston, TX		6 A.
	r: Ridge National Laboratory	
	wrence Derkeley National Laboratory versity of California Davis	
Alok Choudhary, N Terence Critchlow Scott Klasky, Oak	lorthwestern University Pacific Northwest National Laboratory Ridge National Laboratory ensity of California Davis	
Additional Authors:		
Jan Abrens E. Wes Bothel Hank Childs Jan Huang Ken Joy Guineey Koziol	Renneth Moreland George Ostrouchov Mcchael Piapka Venkatram Vishwanath Matthew Wolf Nicholas Wright	
Gerald Lofstead Jeremy Meredith	Kesheng Wu	6 aten
N. S. P. S.		Sponsored by the Office of Advance Scientific Computing Research


System Parameter	2011	"2	018"	Factor Change	
System peak	2 PF	1	LEF	500	
Power	6 MW	≤20	NM C	3	
System Memory	0.3 PB	32-	64 PB	100-200	
Node Performance	0.125 TF	1 TF	10 TF	8-80	
Node Concurrency	12	1,000	10,000	83-830	/
Network BW	1.5 GB/s	100 GB/s	1,000 GB/s	66-660	
System Size (nodes)	18,700	1M	100k	50	
Total Concurrency	225 K	10 B	100 B	40k-400k	
Storage Capacity	15 PB	300-1	.,000 PB	20-67	
I/O BW	0.2 TB/s	20-6	50 TB/s	100-300	
				2 Kitwa	re

Simulation Workflow

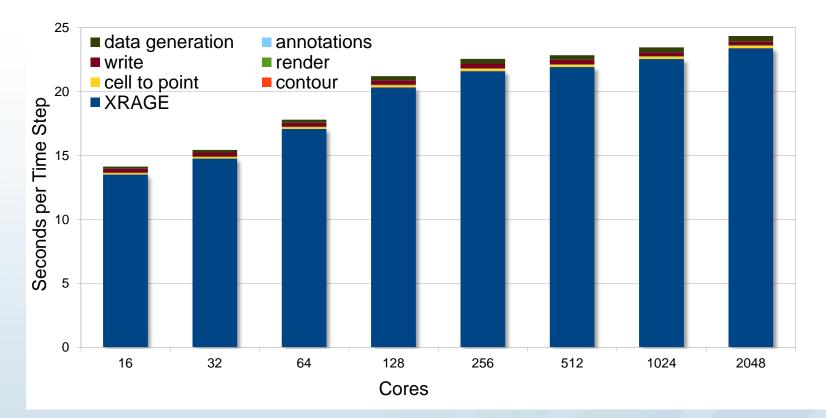
Access to More Data

Reflections and shadows added in post-processing for both examples

*A multi-material, large deformation, strong shock wave, solid mechanics code

Reduced File Size

Rotorcraft simulation output size for a single time step and 32 MPI rank run


- Full data set 448 MB
- Surface of blades 2.8 MB
- Image 71 KB

HPCMP CREATE-AV[™] Helios (Army AFDD/AMRDEC) simulation

Small Run-Time Overhead

XRAGE (LANL) simulation

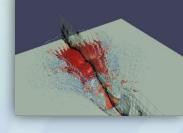
What is ParaView Catalyst?

- A set of *in situ* data analysis and visualization capabilities developed in response to current and near future data analysis challenges
 - Light-weight version of the ParaView server library that is designed to be directly embedded into parallel simulation codes
 - Available since 2010, open source comes with ParaView
- Brings all ParaView pipeline mechanics to the simulation code
 - Data processing through filters
 - Data writers
 - Rendering and compositing
 - C/C++/Fortran & Python examples
 - Editions: only needed features in Catalyst library

Catalyst Outputs

900.0


Simulation



 Interface
 P
 Reface
 Reface</t

Statistics

Rendered Images

Requirements

Simulation Users

- Knowledge of ParaView as a post-processing/analysis tool
 - Basic interaction with GUI Catalyst script generator plugin
 - Incremental knowledge increase to use the *in situ* tools from basic ParaView use
- Programming knowledge can be useful to extend the tools

Simulation Developers

- Pass necessary simulation data to Catalyst
- Need sufficient knowledge of both codes
 - VTK for grids and field data
 - ParaView Catalyst libraries

Interactions

Solver

• Typically only 3 calls between simulation code and adaptor

- Initialize()
 - MPI communicator (optional)

Adaptor

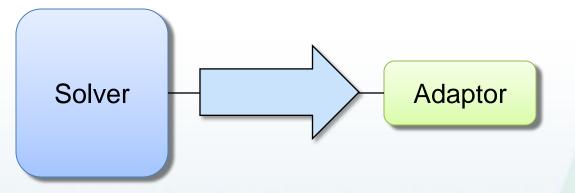
- Add analysis scripts
- CoProcess()
 - Does the work (potentially)
- Finalize()
- Information provided by solver to adaptor
 - Time, time step, force output
 - Grids and fields

- Information provided by adaptor
 - Pipelines to execute
 - Time, time step, force output
 - Grid and fields when needed
 - MPI communicator
- Information provided by Catalyst
 - If co-processing needs to be done

ParaView

Catalyst

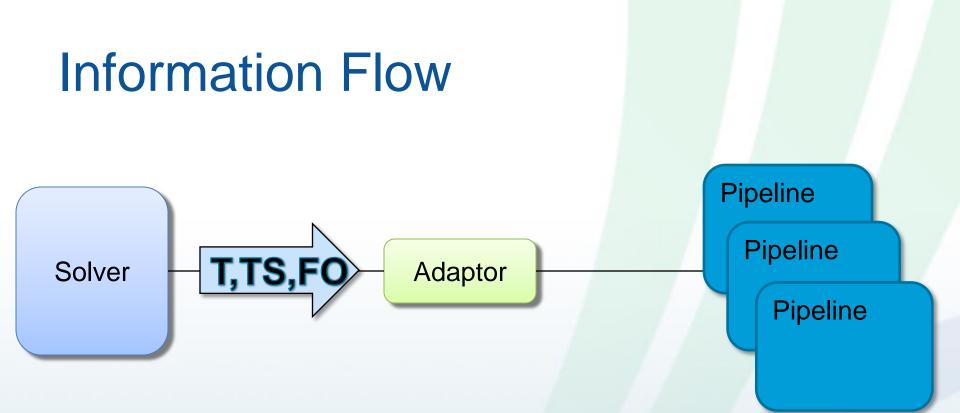
- What grids and fields are needed
- User data can be shared both ways


10

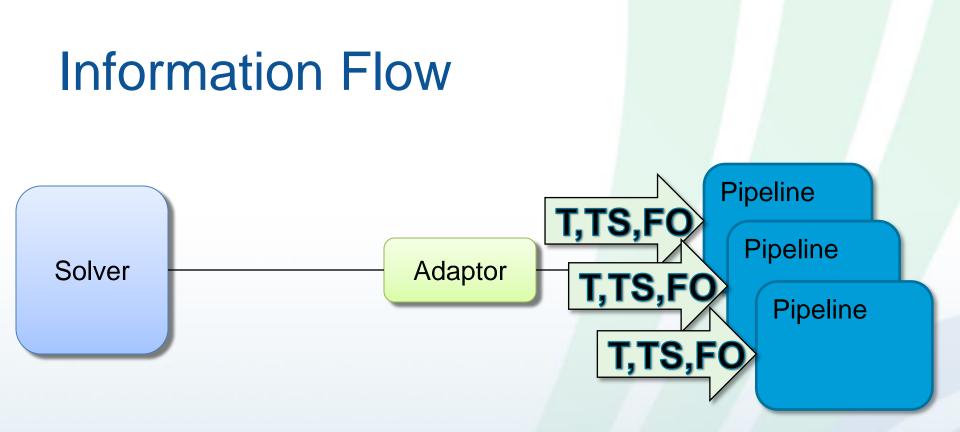
Adaptor Overview

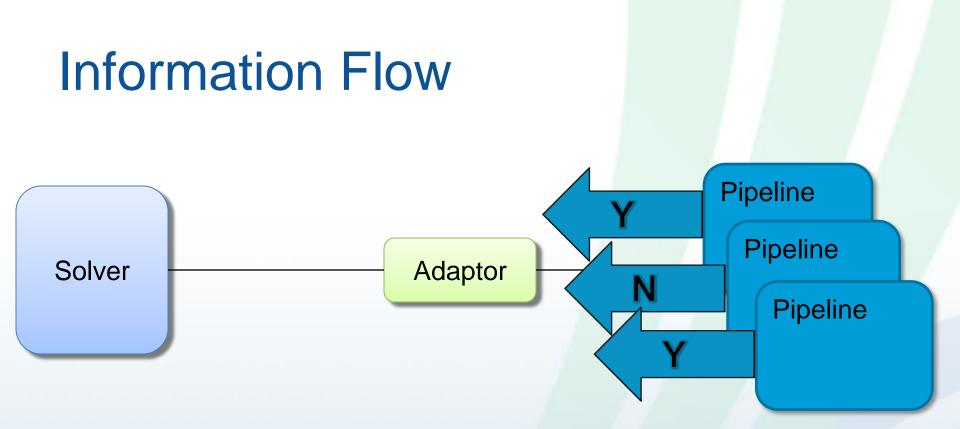
Adaptor

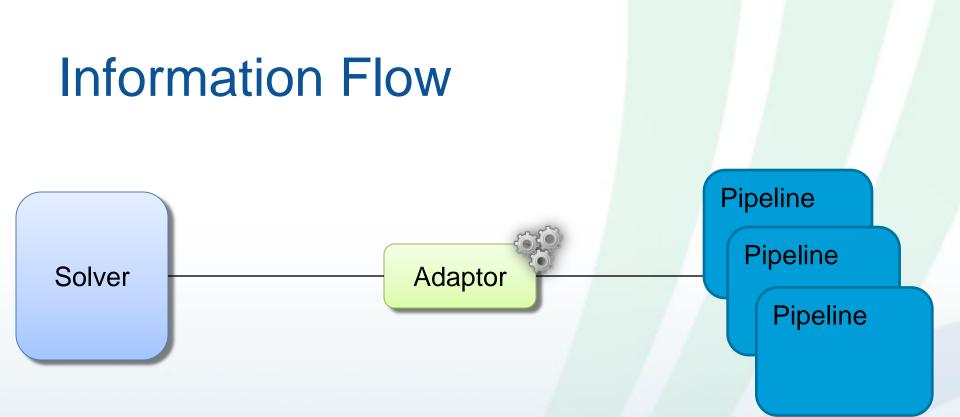
- Creates VTK data objects representing simulation data
 - Deep copy, Shallow copy Zero copy API
- Creates Catalyst pipelines
 - Information on how to process VTK data objects to get desired output
- Typical adaptors
 - Higher level interfaces to Catalyst to simplify vtkCPProcessor: vtkCPAdaptorAPI, CAdaptorAPI (wrapped in Fortran)
 - <u>http://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf</u>

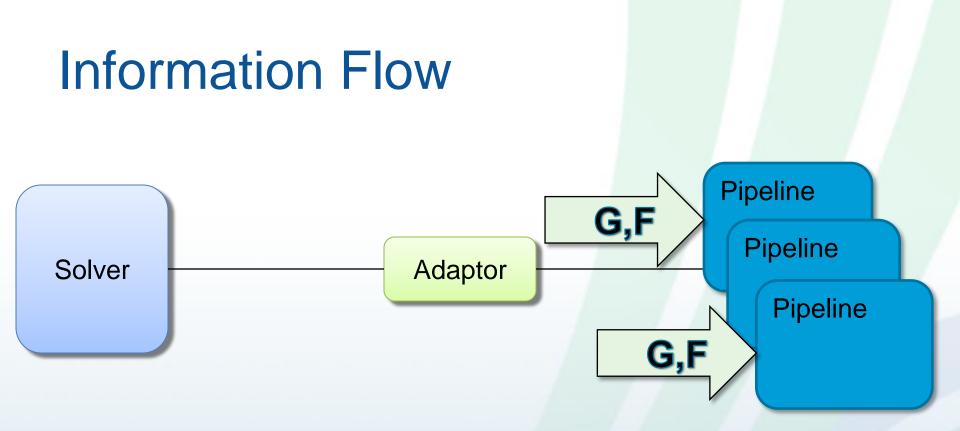

Information Flow

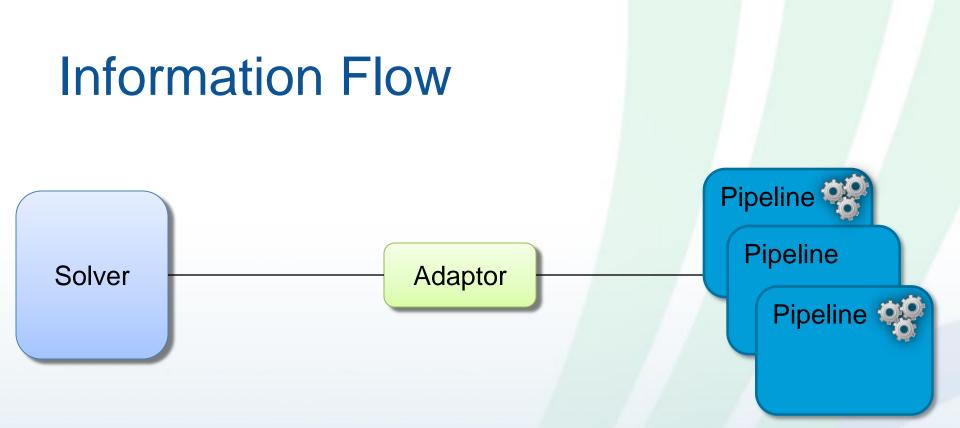
Initialization


- Information for creating pipelines


- Time, Time Step, Force Output flag
- Information for creating grid and field information


 Time, Time Step, Force Output flag are passed to each pipeline


- Pipelines return if they need to be executed/updated


- If any pipeline needs to be executed
 - Adaptor populates VTK objects that represent grids and fields in simulation output

 Pass VTK data object representing Grids and Fields to pipelines that need to execute/update

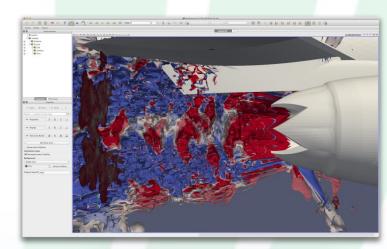
- Pipelines execute and output desired information

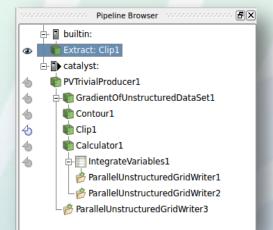
Catalyst Pipelines

- Hard-coded pipelines
 - Users don't need ParaView knowledge in order to use Catalyst, just how to specify Catalyst output through simulation input deck
 - Developers provide input deck options to specify hard-coded pipelines
 - Can be done in Python or C++
- Python scripts generated by the ParaView plugin
 - Offer better control to the user
 - Catalyst User's Guide for detailed instructions
 http://www.paraview.org/files/catalyst/docs/ParaViewCatalystUsersGuide_v2.pdf
 - Python script description
 https://blog.kitware.com/anatomy-of-a-paraview-catalyst-python-script/

Preparing In Situ Processing Pipelines

- Create ParaView pipelines with GUI and export script for Catalyst
 - Load "CatalystScriptGeneratorPlugin"
 - Start with a representative dataset from the simulation (eg. Step 0 on rank 0)
 - Create analysis and visualization pipelines
 - Specify extra pipeline information to tell what to output during simulation run
 - Add in data extract writers
 - Create screenshots to output
 - Both require file name and write frequency

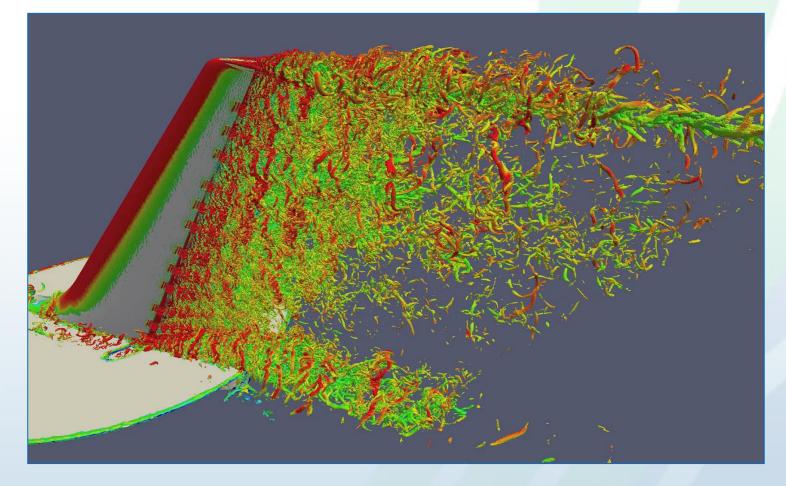

Catalyst Plugin Features


	Catalyst Macros CoProcessing Writers Help
	🗾 🖓 🚉 👧 🖡 Export State
riters <u>H</u> elp	? ×
VTK ADIOS Writer	
CSV Table Writer Pipeline Browser 🗗 🗙	Export State
Parallel Hierarchical B builtin:	Export Co-Processing State
Parallel MultiBlockDar	This wizard will guide you through the steps required to export the current visualization state as a Python
Parallel Image Data W	script that can be run in the co-processing component of ParaView. Make sure to add appropriate writers for the desired pipelines to be used in the Writers menu.
Parallel PolyData Writ 👁 🐚 Slice 1	
Parallel Rectilinear Gri ParallelMultiBlockDataSetWriter 1	
Parallel Structured Gri	
Parallel Unstructured(
	Next Cancel
Properties Information	? ×
Properties 🗗 🗙	← Ⅲ Export State
Pappiy 🖉 Reset 🗱 Delete 💡	Configuration
Search (use Esc to clear text)	Select state configuration options.
Properties (Parallel	Output to Cinema Cinema Composite Output rendering components i.e. views
File Name filename_%t.vtm	Rescale to Data Range
Write Frequency	
	Image Type png
	File Name image_%t.png Write Frequency 1
	Write Frequency 1
	Fit to Screen
	Previous View Next View

Live In Situ

- Provides functionality for interacting with simulation data during simulation run
- Connect ParaView client to a running simulation with Live Visualization enabled
- Only transfer requested data from simulation nodes to client/data server nodes
 then perform "local" processing
- Debugging features
 - Pause 💵
 - Breakpoints
 Breakpoints

🛽 🗉 Set Breakpoint
Breakpoint:
O Time 0.0294844
Time Step 4
X Cancel



In Transit/Hybrid Workflow

- Some analysis and viz operations may not work efficiently at the same parallelism that the simulation code is run at
 - Solution: run these things on a smaller set of processes somewhere "else"
 - Trying Cori@NERSC Burst Buffer for transport mechanism

Going to Exascale

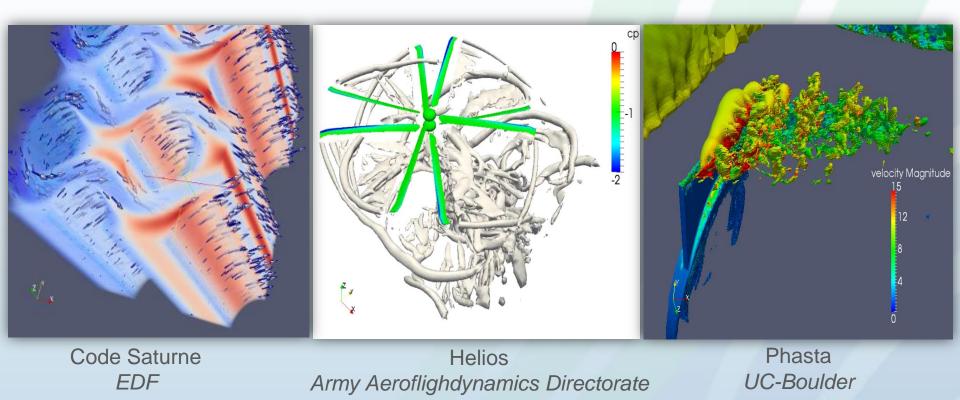
PHASTA running with 256K MPI ranks Performed on MIRA @Argonne (IBM BG/Q) - 2014

24

Going to Exascale 2

- PHASTA run with 1M MPI ranks on MIRA@Argonne (IBM BG/Q) - 2016
- Catalyst edition for reduced library size
- In situ times
 - 1.9 second initialization
 - 5.6 seconds/per slice operation and image output

 M. Rasquin, C. Smith, K. Chitale, S. Seol, B. Matthews, J. Martin, O. Sahni, R. Loy, M. Shephard, and K. Jansen,
 "Scalable fully implicit finite element flow solver with application to high-fidelity flow control simulations on a realistic wing design," Computing in Science and Engineering, vol. 16, no. 6, pp. 13–21, 2014.


Future Work

- At scale file IO for data extracts
 - Reduced IO amount but increased complexity due to non-load-balanced and dynamic output size and location
- In transit workflows (Burst Buffers, ADIOS, etc)
- Catalyst editions with even smaller library sizes
- Advanced Cinema options
- Parallelism appropriate with simulation code's parallelism (e.g. MPI, OpenMP, CUDA, threads, VTK-m, vtkSMPTools, etc.)
- Steering features
- New SENSEI framework SC16 paper ()

www.paraview.org/in-situ

Thanks for your attention

Kitware

Acknowledgments

This work was mainly supported by

Sandia National Laboratories Los Alamos National Laboratory Army SBIRs

The ELCI and AVIDO projects

French FSN ("Fond pour la Société Numérique") cooperative projects that associates academic and industrial partners to design and provide software environment for very high performance computing

