
National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign

Doubling the Whammy: Relating Parallel 
Particle Advection State-of-the-Art to In 
Situ Processing

Rob Sisneros, Dave Pugmire



This Talk

• Not in situ, motivated by in situ (classify that, Hank)
• In situ motivation
• Progress improving parallel particle advection 



The Argument for In Situ

• Larger machines make larger datasets
• Data is already hard if not possible to move let alone 

store

• The only possibility for full scale analysis is to bypass the 
storage subsystem

• Operate on the data in situ





… Kind of



Hank Doesn’t Like In Situ

• How do we figure out what to do in situ before the 
simulation runs? 

• What’s the new cost for being wrong?
• Is there really enough memory for us to take some from 

the simulation?
• What about some proposed very low memory per core 

machines?

• After integrating with a simulation, how much of the HPC 
workflow should we be concerned with?  Resiliency? 
Checkpointing?

• Wait – how the hell do even integrate with simulation 
codes?



Some opinions



Stated as fact



All things in situ represent the core of 
current HPC visualization research

• Does this mean we have addressed these issues? No
• What the hell is all the research then? Lots of ad hoc 

solutions
• Are we at least trying to answer these questions?  Not 

really.  (We’ve kind of begrudgingly agreed this is 
somehow the future and in the meantime continue to 
publish our ad hoc approaches)



It gets worse
But Wait, There’s More



Broader View of HPC Visualization Research

• Summary: we want to enable visualization capabilities on 
HPC platforms through improved algorithms, etc.

• Moving even non-in situ visualization to HPC resources 
adds many of the difficulties of in situ deployment (or 
similar ones) 

• Ways we improve performance make in situ deployment 
harder (or impossible)



Our favorite problem child



Particle Advection

• Particle advection is a foundational visualization algorithm
• Used for streamlines, pathlines, streamsurfaces, pathsurfaces, 

poincare analysis, FTLE, etc.

• Difficult to efficiently parallelize due to load imbalance
• Data decomposition
• Vector field characteristics
• Seeding strategies
• Number of seeds
• Computational resources



Improvements

• Parallelizing over data domains vs. over seeds
• Hybrid parallelism approaches
• Load balancing/rebalancing

• Workflow estimations 
• Per round dynamic

• Data partitioning
• Create optimal domain geometry
• Static/dynamic



What works in situ?



Improvements In Situ

• Parallelizing over data domains vs. over seeds
• Hybrid parallelism approaches
• Load balancing/rebalancing

• Workflow estimations 
• Per round dynamic

• Data partitioning
• Create optimal domain geometry
• Static/dynamic
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This Work

• Go back to (and stay) where improvements impact 
practical use: parallelize over data (POD) algorithm

• Poke around for opportunities through analyzing 
parameter sweep results

• Getting very practical
• Improvements to particle advection are slow to make it into 

production

• POD is the primary algorithm offered by large scale visualization 
suites and used at HPC centers



Parameter Sweep

• Advection Rounds 
• Number of advection steps: 5 values
• Number of particles per round: 18 values

• Seeding
• Number of seeds: 50K, 250K, 500K
• Strategy: whole, medium, small

• Communication: synchronous, asynchronous
• Parallelism

• Moderate: 64
• Larger: 512, 1024

• Four datasets



Datasets

Synthetic Supernova

Fusion Thermal



Seeding Strategies

Whole Medium ~20% Small ~ 5%



The Grand Total

• 4 datasets

• 3 seeding strategies
• 3 seeding levels
• 3 levels of concurrency

• 2 algorithms
• 90 parameter pairs

4*3*3*3*2*90 = 19,440 tests



Experimental Setup

• Run on Rhea cluster at OLCF using VisIt
• Rhea: 512 node, two 8-core Intel Xeon, 64 GB per 

node

• Used a production version of VisIt (2.9)
• Minor modifications to POD algorithm to support 

additional knobs
• Added more timers, counters, etc.
• Ignored I/O and rendering time

algorithm



Early Results



Highlighting the Unhighlightable

• For “particles per round” the worst possible parameter is 
the DEFAULT

• For “advection steps” the default is not the worst 
possible, but is nothing to celebrate



Qualifying the Runs

• F(x,y) = Fastest time at configuration (x,y)

• T(x,y) = Time at configuration (x,y)

• Bin the times into 4 groups:



Default vs. Everything Else



Point #1

• Updating terrible default settings save HPC resources



No Brainer – Synchronous vs. Asynchronous

Sync

Async



but



250K Seeds – Synchronous vs. Asynchronous

Sync

Async



Med. Strategy– Synchronous vs. Asynchronous

Sync

Async



Point #2

• The best performing parameters are similar between 
synchronous and asynchronous communication

• Asynchronous communication is appropriate to use 
alone for testing, drastically reducing time required



Measuring Runs

• We are evaluating this algorithm because it is 
susceptible to load imbalance

• We know load imbalance directly affects the number of 
rounds necessary for completing advection

• However, the straight runtime has no discernible 
relationship to number of advection rounds



Runtime Distribution



Runtime Alternative: 
Imbalance Metric

• Average advection time: adT
• Average communication time: CT
• Total time to advect particles: coreCount ∗ adT 

• Total communication coreCount ∗ CT 

• Best case scenario 
• Each core is performing the average adT
• No waiting
• Ratio of wait to work is 0 



Worst Case 
Scenario

• Serial
• One processor at work each round then all communicated to 

another

• Total time: worstCase = coreCount ∗ adT + coreCount ∗ CT
 

• Average wait time: 

• Ratio of wait to work: 
• Worst case ratio is maximum ratio value, dividing by this 

value keeps imbalance metric in range [0,1]



Imbalance



Points #3 and #4

• Dynamic per-round setting of maxICs is an area 
requiring further investigation – there is a nice division 
between the good and bad performing parameters

• Also, there are areas that definitively do not require 
additional investigation 
• Parameters, e.g. maxSteps
• Datasets, e.g. synthetic
• Leaving these out makes for more efficient parameter sweeps



Conclusion

• Generally, if in situ is the future, our research should not 
be at odds with it

• Specifically
• Default settings of HPC Algorithms should *not* be tuned to 

terrible
• There are efficient ways to implement a testing framework to 

tune defaults to at least half terrible
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