
National Center for Supercomputing Applications
University of Illinois at Urbana–Champaign

Doubling the Whammy: Relating Parallel
Particle Advection State-of-the-Art to In
Situ Processing

Rob Sisneros, Dave Pugmire

This Talk

• Not in situ, motivated by in situ (classify that, Hank)
• In situ motivation
• Progress improving parallel particle advection

The Argument for In Situ

• Larger machines make larger datasets
• Data is already hard if not possible to move let alone

store

• The only possibility for full scale analysis is to bypass the
storage subsystem

• Operate on the data in situ

… Kind of

Hank Doesn’t Like In Situ

• How do we figure out what to do in situ before the
simulation runs?

• What’s the new cost for being wrong?
• Is there really enough memory for us to take some from

the simulation?
• What about some proposed very low memory per core

machines?

• After integrating with a simulation, how much of the HPC
workflow should we be concerned with? Resiliency?
Checkpointing?

• Wait – how the hell do even integrate with simulation
codes?

Some opinions

Stated as fact

All things in situ represent the core of
current HPC visualization research

• Does this mean we have addressed these issues? No
• What the hell is all the research then? Lots of ad hoc

solutions
• Are we at least trying to answer these questions? Not

really. (We’ve kind of begrudgingly agreed this is
somehow the future and in the meantime continue to
publish our ad hoc approaches)

It gets worse
But Wait, There’s More

Broader View of HPC Visualization Research

• Summary: we want to enable visualization capabilities on
HPC platforms through improved algorithms, etc.

• Moving even non-in situ visualization to HPC resources
adds many of the difficulties of in situ deployment (or
similar ones)

• Ways we improve performance make in situ deployment
harder (or impossible)

Our favorite problem child

Particle Advection

• Particle advection is a foundational visualization algorithm
• Used for streamlines, pathlines, streamsurfaces, pathsurfaces,

poincare analysis, FTLE, etc.

• Difficult to efficiently parallelize due to load imbalance
• Data decomposition
• Vector field characteristics
• Seeding strategies
• Number of seeds
• Computational resources

Improvements

• Parallelizing over data domains vs. over seeds
• Hybrid parallelism approaches
• Load balancing/rebalancing

• Workflow estimations
• Per round dynamic

• Data partitioning
• Create optimal domain geometry
• Static/dynamic

What works in situ?

Improvements In Situ

• Parallelizing over data domains vs. over seeds
• Hybrid parallelism approaches
• Load balancing/rebalancing

• Workflow estimations
• Per round dynamic

• Data partitioning
• Create optimal domain geometry
• Static/dynamic

Improvements In Situ

• Parallelizing over data domains vs. over seeds
• Hybrid parallelism approaches
• Load balancing/rebalancing

• Workflow estimations
• Per round dynamic

• Data partitioning
• Create optimal domain geometry
• Static/dynamic

This Work

• Go back to (and stay) where improvements impact
practical use: parallelize over data (POD) algorithm

• Poke around for opportunities through analyzing
parameter sweep results

• Getting very practical
• Improvements to particle advection are slow to make it into

production

• POD is the primary algorithm offered by large scale visualization
suites and used at HPC centers

Parameter Sweep

• Advection Rounds
• Number of advection steps: 5 values
• Number of particles per round: 18 values

• Seeding
• Number of seeds: 50K, 250K, 500K
• Strategy: whole, medium, small

• Communication: synchronous, asynchronous
• Parallelism

• Moderate: 64
• Larger: 512, 1024

• Four datasets

Datasets

Synthetic Supernova

Fusion Thermal

Seeding Strategies

Whole Medium ~20% Small ~ 5%

The Grand Total

• 4 datasets

• 3 seeding strategies
• 3 seeding levels
• 3 levels of concurrency

• 2 algorithms
• 90 parameter pairs

4*3*3*3*2*90 = 19,440 tests

Experimental Setup

• Run on Rhea cluster at OLCF using VisIt
• Rhea: 512 node, two 8-core Intel Xeon, 64 GB per

node

• Used a production version of VisIt (2.9)
• Minor modifications to POD algorithm to support

additional knobs
• Added more timers, counters, etc.
• Ignored I/O and rendering time

algorithm

Early Results

Highlighting the Unhighlightable

• For “particles per round” the worst possible parameter is
the DEFAULT

• For “advection steps” the default is not the worst
possible, but is nothing to celebrate

Qualifying the Runs

• F(x,y) = Fastest time at configuration (x,y)

• T(x,y) = Time at configuration (x,y)

• Bin the times into 4 groups:

Default vs. Everything Else

Point #1

• Updating terrible default settings save HPC resources

No Brainer – Synchronous vs. Asynchronous

Sync

Async

but

250K Seeds – Synchronous vs. Asynchronous

Sync

Async

Med. Strategy– Synchronous vs. Asynchronous

Sync

Async

Point #2

• The best performing parameters are similar between
synchronous and asynchronous communication

• Asynchronous communication is appropriate to use
alone for testing, drastically reducing time required

Measuring Runs

• We are evaluating this algorithm because it is
susceptible to load imbalance

• We know load imbalance directly affects the number of
rounds necessary for completing advection

• However, the straight runtime has no discernible
relationship to number of advection rounds

Runtime Distribution

Runtime Alternative:
Imbalance Metric

• Average advection time: adT
• Average communication time: CT
• Total time to advect particles: coreCount ∗ adT

• Total communication coreCount ∗ CT

• Best case scenario
• Each core is performing the average adT
• No waiting
• Ratio of wait to work is 0

Worst Case
Scenario

• Serial
• One processor at work each round then all communicated to

another

• Total time: worstCase = coreCount ∗ adT + coreCount ∗ CT

• Average wait time:

• Ratio of wait to work:
• Worst case ratio is maximum ratio value, dividing by this

value keeps imbalance metric in range [0,1]

Imbalance

Points #3 and #4

• Dynamic per-round setting of maxICs is an area
requiring further investigation – there is a nice division
between the good and bad performing parameters

• Also, there are areas that definitively do not require
additional investigation
• Parameters, e.g. maxSteps
• Datasets, e.g. synthetic
• Leaving these out makes for more efficient parameter sweeps

Conclusion

• Generally, if in situ is the future, our research should not
be at odds with it

• Specifically
• Default settings of HPC Algorithms should *not* be tuned to

terrible
• There are efficient ways to implement a testing framework to

tune defaults to at least half terrible

	Doubling the Whammy: Relating Parallel Particle Advection State-of-the-Art to In Situ Processing
	This Talk
	The Argument for In Situ
	PowerPoint Presentation
	… Kind of
	Hank Doesn’t Like In Situ
	Some opinions
	Stated as fact
	All things in situ represent the core of current HPC visualization research
	It gets worse
	Broader View of HPC Visualization Research
	Our favorite problem child
	Particle Advection
	Improvements
	What works in situ?
	Improvements In Situ
	Slide 17
	This Work
	Parameter Sweep
	Datasets
	Seeding Strategies
	The Grand Total
	Experimental Setup
	Early Results
	Highlighting the Unhighlightable
	Qualifying the Runs
	Default vs. Everything Else
	Point #1
	No Brainer – Synchronous vs. Asynchronous
	but
	250K Seeds – Synchronous vs. Asynchronous
	Med. Strategy– Synchronous vs. Asynchronous
	Point #2
	Measuring Runs
	Runtime Distribution
	Runtime Alternative: Imbalance Metric
	Worst Case Scenario
	Imbalance
	Points #3 and #4
	Conclusion

