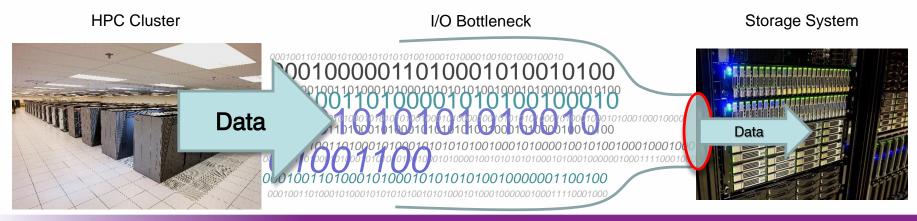
Applied Research Group Seeking Answers, Deploying Solutions

Intelligent Light

IN SITU PRODUCTION OF EXTRACT DATABASES FOR VISUALIZATION WOIV 2016

Brad Whitlock & Earl P. N. Duque Intelligent Light



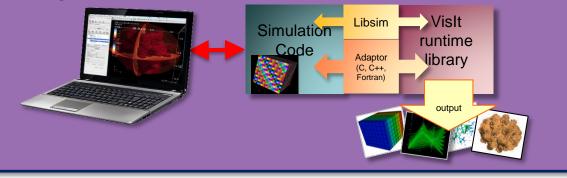
Copyright (c) 2016 Intelligent Light All Rights Reserved

Intelligent Light's Vislt work partially supported by DOE Grants SC0007548, SC0012449

Problems of Running at Large Scale

- Simulations generate volumes of data that are impractical to write due to time and storage constraints
- A common workaround is to save data less frequently
 - Low temporal resolution
 - Possibly difficult to interpret
 - Possibly lost science
- Post-processing is also I/O intensive and slow

Copyright (c) 2016 Intelligent Light All Rights Reserved


Intelligent Light's Vislt work partially supported by DOE Grants SC0007548, SC0012449

Libsim puts Vislt in situ

- Vislt provides
 Libsim, a library
 that simulations
 may use to let Vislt
 connect and
 access their data
- Avoids I/O and data movement
- Supports automated data product generation
- Also supports userdriven exploration of simulation data

Vislt

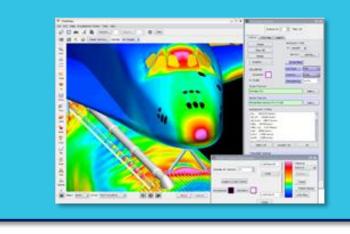
- Versatile open source software for visualizing and analyzing petascale simulation datasets
 Libsim
- Enables simulations to perform data analysis and visualization in situ by applying VisIt algorithms to data.

In Situ Extracts Workflow

• Use Libsim to instrument simulation so it produces surface extracts in FieldView

Extracts overcome in situ's greatest perceived weakness – that you need to have some idea of what you want to see in the end

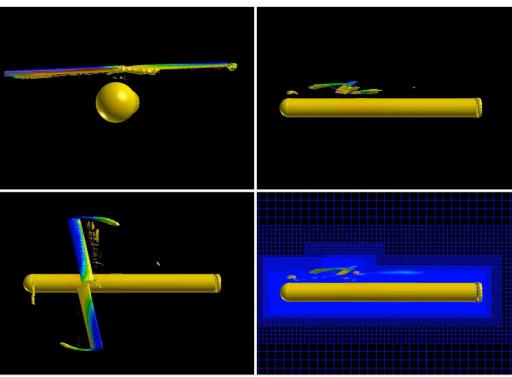
- Permits interactive exploration using post-processing methods
- Cheap enough to save frequently



Extract Generation is Decoupled from Visualization

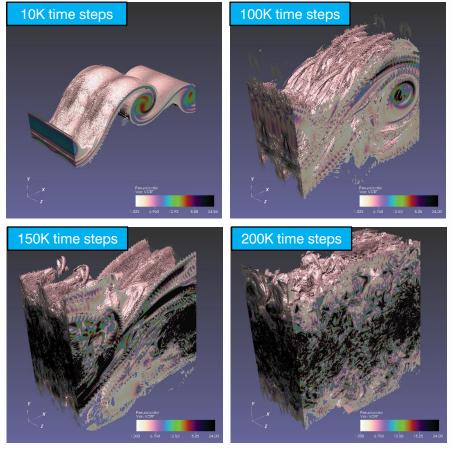
- Extract visualization can run on separate compute resources
- Fewer cores can be allocated
- Users can leverage their preferred visualization software

FieldView


- Sold for CFD post-processing since 1991
- Over 3000 licenses of FieldView in use today throughout the world
- Industries ranging from aerospace and automotive to nuclear engineering, turbomachinery, wind energy and food processing

CREATE-AV Kestrel

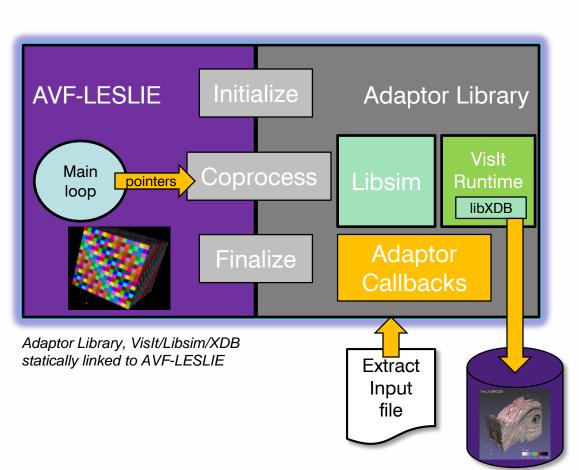
- Fixed-wing air vehicle simulation suite
- Unstructured and AMR
 geometries
- Extract overhead 2-3% of solver runtime to output isosurface and slice extracts to classic XDB format on 1024 cores
 - Writing volume data at same frequency would take 30% of runtime
- Extracts 21x smaller (427Mb vs 9.1Gb)



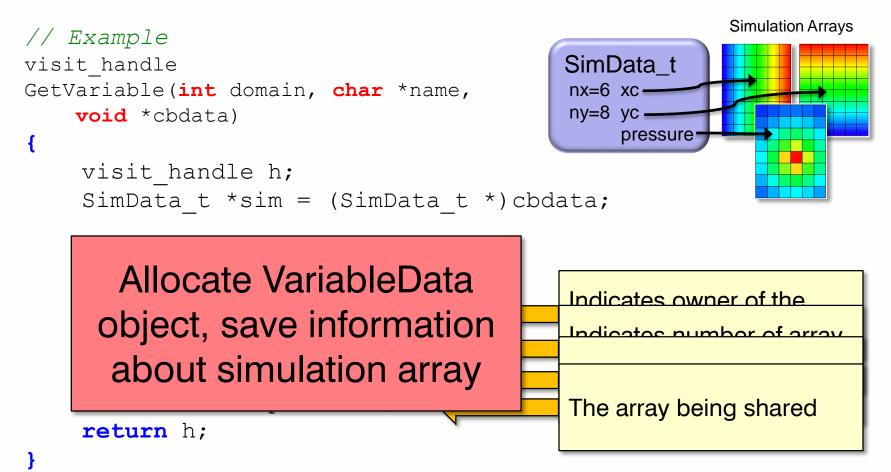
B. Whitlock, J.R. Forsythe, S. M. Legensky *"In Situ Infrastructure Enhancements for Data Extract Generation"*, AIAA SciTech, January 2016, San Diego, CA

AVF-LESLIE

- Reacting flow code for DNS/LES investigation of canonical reactive flows
 - Simulated turbulent mixing layer mimics the dynamics encountered when two fluid layers slide past one another
 - Found in ocean and atmospheric fluid dynamics
 - Found in combustion and chemical processing
 - 2 sliding fluid layers are subject to instabilities and can evolve from largely 2-d laminar flow 3-d homogenous turbulent flow
 - Written in Fortran 90 with MPI



Isosurfaces and slices of vorticity magnitude showing progression of vortex braiding and breakdown


Instrumenting AVF-LESLIE

- Created adaptor library
 for AVF-LESLIE
- Reads list of extracts
 from input file
- Calls "coprocess" function when we want to generate extracts
- Pass pointers to mesh and field data to be exposed to Vislt via Libsim inside adaptor callbacks
- Extracts are generated and saved to XDB format

Copyright (c) 2016 Intelligent Light All Rights Reserved

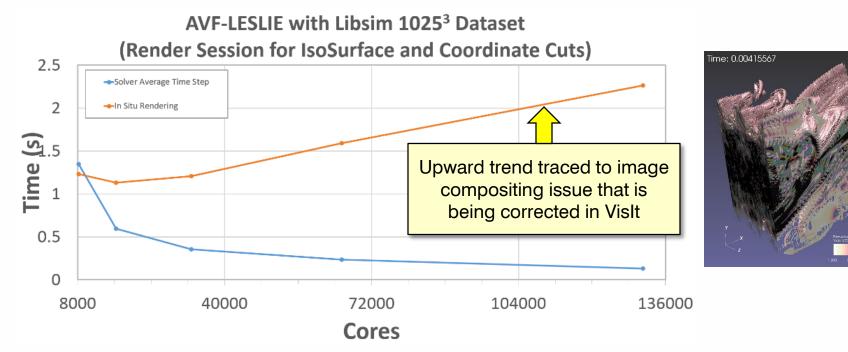
Example GetVariable Function

Copyright (c) 2016 Intelligent Light All Rights Reserved

Intelligent Light's VisIt work partially supported by DOE Grants SC0007548, SC0012449

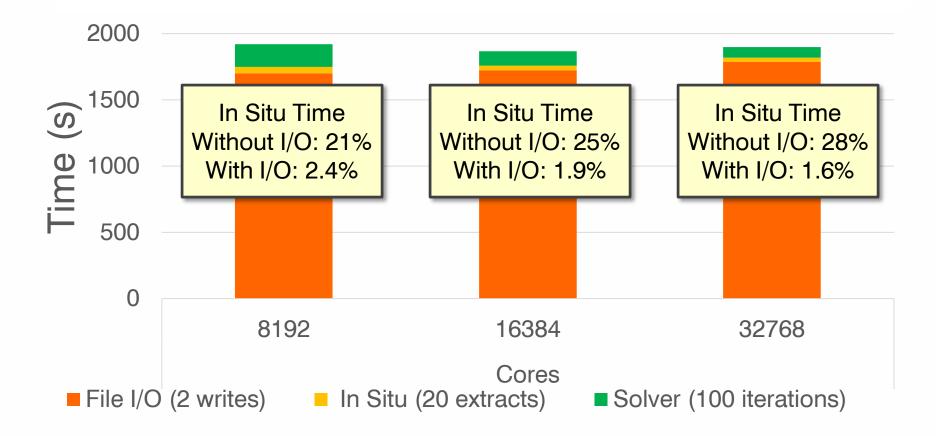
AVF-LESLIE In Situ Setup

• AVF-LESLIE runs on Titan


- Turbulent mixing layer problem
- 1025³ grid points
- Strong scaling study (same grid size used as number of cores increases, decreasing work per core)
- In Situ Rendering workflow from 8K-131K cores
- In Situ Extracts workflow from 8K-32K cores
 - Generate 1 isosurface of vorticity (computed by adaptor) and save extract to FieldView XDB
 - XDB files rendered on local workstation
- Enhanced version of Vislt 2.10 with some bug fixes

Titan

- Oak Ridge National Laboratory
- Cray XK7
- 27 Petaflops (theoretical peak)
- 18,688 nodes with 16 AMD cores
- 710 Terabytes memory
- 30 Petabytes storage


In Situ Rendering Workflow

- Calculate isosurfaces and slices of vorticity using Vislt session file for plot setup
- Save 1600² PNG image every 5th iteration
- Run on Titan from 8K to 131K cores
- More work for visualization than for the solver in this case!

In Situ Extract Generation Overhead

- Save vorticity isosurface every 5th iteration to FieldView XDB format
- Use write groups size 96 to partially aggregate extract I/O

Copyright (c) 2016 Intelligent Light All Rights Reserved

Intelligent Light's Vislt work partially supported by DOE Grants SC0007548, SC0012449

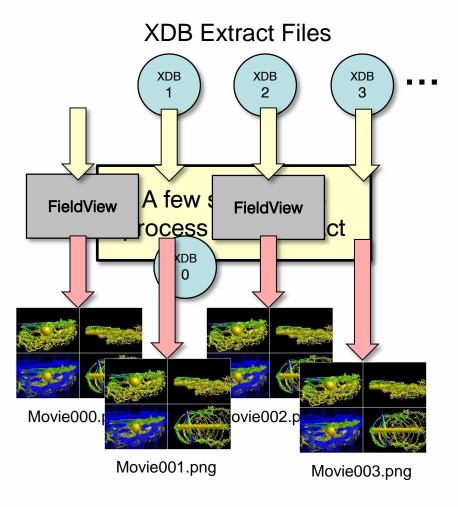
File Size Comparison

- Each 100 iterations of the solver produced 1 volume results file
- Each 100 iterations of the solver produced 20 XDB files

Cores	1 Volume File Size (bytes)	1 Extract File Size (avg bytes)	1 Extract / 1 Volume	20 Extracts / 1 Volume
8192	51842236960	260100740	0.005017159	0.105360337
16384	51842236960	262613625	0.005065631	0.106378244
32768	51842236960	266710142	0.00514465	0.108037641

~200x reduction ~10x reduction

Extract Post Processing


- Multiple FieldView
 instances used
- XDB extracts used to make movie
 - Further analysis is possible since extracts contain geometry with data
- Time saved by reducing data in situ

Copyright (c) 2016 Intelligent Light

All Rights Reserved

- Surfaces of interest already computed
- No need to compute vorticity

Intelligent Light's Vislt work partially supported by DOE Grants SC0007548, SC0012449

Acknowledgements

- Vislt/Libsim work was performed at Intelligent Light and is in part supported by the U.S. Department of Energy under award numbers DE-SC0007548, DE-SC0012449.
- Material related to Kestrel presented is a product of the CREATE-AV element of the Computational Research and Engineering for Acquisition Tools and Environments (CREATE) program, sponsored by the U.S. Department of Defense High Performance Computing Modernization

Program Office (HPCMPO).