In-Situ Visualization for 3D Agent-Based Vocal Fold Inflammation and Repair Simulation

Nuttiiya Seekhao, Joseph JaJa, Luc Mongeau, Nicole Y. K. Li-Jessen

Presented by: Nuttiiya Seekhao
University of Maryland – College Park
@ISC-HPC WOIV 2017
Frankfurt, Germany
Overview

• Problem:
 • Voice is one of our main forms of communication
 • Voice disorders afflict 1/13 Americans annually

• Overall Goal:
 • Development of a scalable computational model to simulate and visualize the vocal fold inflammation and healing processes at the cellular level.

• Main Contributions:
 • Novel scalable and efficient Agent-Based Modeling procedures to simulate the vocal fold at the cellular level on heterogeneous platforms.
 • Adaptive visualization techniques so as to enable in-situ visualization at almost no cost.
Outline

• **Introduction** – Vocal Fold Inflammation and Repair
• **Introduction** – Agent-Based Modeling (ABM)
• **Methods** – Simulation and Visualization Scheduling
• **Methods** – Visualized Data Reduction
• **Results**
• **Conclusion**
• **Future Work**
Outline

• **Introduction** – Vocal Fold Inflammation and Repair
• **Introduction** – Agent-Based Modeling (ABM)
• **Methods** – Simulation and Visualization Scheduling
• **Methods** – Visualized Data Reduction
• **Results**
• **Conclusion**
• **Future Work**
Introduction – Vocal Fold Inflammation and Repair

- **Biomechanical Stress**
 - Force applied on tissue. Talking, shouting etc.

- **Mucosal Damage**
 - Damage in the “skin” layer of the vocal fold

- **Cell Recruitment**
 - Attracting cells such as platelets, neutrophils, and macrophages to the wound site

- **Cells Function**
 - Each cell performs its duty. One or more of the following:
 - Secrete chemical (IL-1, MMP-8 etc.) to attract, excite or inhibit other cells
 - Deposit ECM protein (collagen, elastin etc.) to heal damaged tissue
 - Clean up cell debris
Introduction – Vocal Fold Inflammation and Repair

Force applied on tissue. Talking, shouting etc.

Damage in the “skin” layer of the vocal fold

Attracting cells such as platelets, neutrophils, and macrophages to the wound site

Each cell perform its duty. One or more of the following:
• Secrete chemical (IL-1, MMP-8 etc.) to attract, excite or inhibit other cells
• Deposit ECM protein (collagen, elastin etc.) to heal damaged tissue
• Clean up cell debris
Introduction – Vocal Fold Inflammation and Repair

Biomechanical Stress

Mucosal Damage

Cell Recruitment

Cells Function

Force applied on tissue. Talking, shouting etc.

Damage in the “skin” layer of the vocal fold

Attracting cells such as platelets, neutrophils, and macrophages to the wound site

Each cell perform its duty. One or more of the following:
• Secrete chemical (IL-1, MMP-8 etc.) to attract, excite or inhibit other cells
• Deposit ECM protein (collagen, elastin etc.) to heal damaged tissue
• Clean up cell debris

Image from: https://wiki.uiowa.edu/download/attachments/39001206/nodules%20op%205.png?api=v2
Introduction – Vocal Fold Inflammation and Repair

Biomechanical Stress

Mucosal Damage

Cell Recruitment

Cells Function

Force applied on tissue. Talking, shouting etc.

Damage in the “skin” layer of the vocal fold

Attracting cells such as platelets, neutrophils, and macrophages to the wound site

Each cell perform its duty. One or more of the following:
• Secrete chemical (IL-1, MMP-8 etc.) to attract, excite or inhibit other cells
• Deposit ECM protein (collagen, elastin etc.) to heal damaged tissue
• Clean up cell debris

Introduction – Vocal Fold Inflammation and Repair

- Biomechanical Stress
 - Force applied on tissue. Talking, shouting etc.

- Mucosal Damage
 - Damage in the “skin” layer of the vocal fold

- Cell Recruitment
 - Attracting cells such as platelets, neutrophils, and macrophages to the wound site

- Cells Function
 - Each cell perform its duty. One or more of the following:
 - Secrete chemical (IL-1, MMP-8 etc.) to attract, excite or inhibit other cells
 - Deposit ECM protein (collagen, elastin etc.) to heal damaged tissue
 - Clean up cell debris

Response to voice therapy treatments
- Voice rest
- Resonant voice
- Spontaneous speech
Outline

• **Introduction** – Application
• **Introduction** – Agent-Based Modeling (ABM)
• **Methods** – Simulation and Visualization Scheduling
• **Methods** – Visualized Data Reduction
• Results
• Conclusion
• Future Work
What is Agent-based Modeling (ABM)?

- Powerful, widely-used approach to quantitatively simulate a system defined by a set of autonomous agents that operate and interact in discrete time steps.
Why use Agent-based Modeling (ABM)?

• Ability to capture complex interactions and multi-directional causality at the microscale level

• Has been successfully used in many domains such as biology, ecology, social sciences, economics, network theory, and business.

• Allows us to incorporate our current understanding of cellular processes that take place during inflammation and healing of damaged tissues.

• Has been partially validated on a small scale using empirical data related to vocal fold inflammation.
How is Agent-based Modeling (ABM) used?

- **Tissue area of interest** (ABMs term: World)
- **Slices of tissue** (ABMs term: Patches)
- **Components of tissue (ECM)** such as Collagen, Elastin, Hyaluronic Acid
- **Chemical Levels** (ABMs term: Patches Attributes)
How is Agent-based Modeling (ABM) used?

- Fibroblast (Cell) (ABMs term: Agents)
- Neutrophil (Cell) (ABMs term: Agents)
- Macrophage (Cell) (ABMs term: Agents)
How is Agent-based Modeling (ABM) used?

Fibroblast (Cell) (ABMs term: Agents)

Neutrophil (Cell) (ABMs term: Agents)

Macrophage (Cell) (ABMs term: Agents)
How is Agent-based Modeling (ABM) used?

- **Fibroblast** (Cell)
 - ABMs term: Agents

- **Neutrophil** (Cell)
 - ABMs term: Agents

- **Macrophage** (Cell)
 - ABMs term: Agents
How is Agent-based Modeling (ABM) used?

Cytokine Secretion
How is Agent-based Modeling (ABM) used?

Cytokine Diffusion
Outline

• Introduction – Application
• Introduction – Agent-Based Modeling (ABM)
• **Methods** – Simulation and Visualization Scheduling
• Methods – Visualized Data Reduction
• Results
• Conclusion
• Future Work
Methods – Simulation and Visualization Scheduling
Methods – Simulation and Visualization Scheduling

- seedCells()
- cellFunction()
- ECMFunction()
- ECMFragment()
- ABM_prep_and_transfer_data()
- DiffuseChem_0()
- DiffuseChem_1()
- DiffuseChem_n()
- ABM_kernel_0()
- ABM_kernel_1()
- ABM_kernel_n()

Program states for next iteration

$N_{GPU} = 1$
Outline

• **Introduction** – Application
• **Introduction** – Agent-Based Modeling (ABM)
• **Methods** – Simulation and Visualization Scheduling
• **Methods** – Visualized Data Reduction
• Results
• Conclusion
• Future Work
Problem Scale

<table>
<thead>
<tr>
<th>Item</th>
<th>Unit</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>World</td>
<td>patches x patches</td>
<td>1390 x 1006 x 110</td>
</tr>
<tr>
<td>Patch Dimension</td>
<td>μm x μm x μm</td>
<td>15 x 15 x 15</td>
</tr>
<tr>
<td>Total Number of Patches</td>
<td>unit</td>
<td>154 million</td>
</tr>
<tr>
<td>ECM Data</td>
<td>types data points</td>
<td>3 461 millions</td>
</tr>
<tr>
<td>Chemical Data</td>
<td>types data points</td>
<td>8 1.2 billions</td>
</tr>
<tr>
<td>Simulated Area</td>
<td>mm x mm x mm</td>
<td>20.85 x 15.09 x 1.65</td>
</tr>
<tr>
<td>Simulated Time Step</td>
<td>minutes</td>
<td>30</td>
</tr>
</tbody>
</table>

Initial number of

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrophils</td>
<td>cells</td>
<td>1.72 millions</td>
</tr>
<tr>
<td>Macrophages</td>
<td>cells</td>
<td>0.97 millions</td>
</tr>
<tr>
<td>Fibroblasts</td>
<td>cells</td>
<td>12.20 millions</td>
</tr>
</tbody>
</table>
Methods – Visualized Data Reduction

• Constant Sampling
Methods – Visualized Data Reduction

• Adaptive Sampling
 • Lower resolution in low-activity areas
 • Enhance resolution in high-activity areas
Outline

• **Introduction** – Application
• **Introduction** – Agent-Based Modeling (ABM)
• **Methods** – Simulation and Visualization Scheduling
• **Methods** – Visualized Data Reduction
• **Results**
• Conclusion
• Future Work
Results

Execution Time Per Iteration
(30-minute Tick)

- Executed on GPU
- Executed on CPU

<table>
<thead>
<tr>
<th>GPU 0</th>
<th>GPU 1</th>
<th>CPUs 0 - 27</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diffusion</td>
<td>Visualization</td>
<td>Cell</td>
</tr>
</tbody>
</table>

- $t(s)$
- 6.2 seconds/iteration
In Situ Visualization – VirtualGL and TurboVNC
Macrophages
Neutrophils
Fibroblasts

TNF

Aggregated Stats

Initial Damage (patches): 25%
Current Damage (patches): 36%
Percent Healed (%): 39.0

Chemical Concentration
0.00
0.25
0.50
0.75
1.00

Damages
Outline

• **Introduction** – Application
• **Introduction** – Agent-Based Modeling (ABM)
• **Methods** – Simulation and Visualization Scheduling
• **Methods** – Visualized Data Reduction
• **Results**
• **Conclusion**
• **Future Work**
Conclusion

• **Adaptive sampling** scheme for data reduction with no compromise on resolution

• **CPU-GPUs task scheduling** technique to mask visualization cost

• **In situ VF ABM simulation suite** capable of:
 • Processing 17 million biological cells
 • Processing 1.2 billion chemical data points
 • Collecting and display aggregated stats

 in **real-time** (under 7 seconds per 30-minute iteration).
Future Work

• Better cell migration visualization using volume rendering
• Iso-surface for cytokine gradient visualization
• ECM visualization
• Activity-level-aware data reduction
Questions?