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Abstract. With climate simulations and earth observations, earth sys-
tem sciences belong to the most data intensive scientific disciplines, and
the rate at which the data is produced increases continuously. Current
models supporting a higher complexity paired with an increased res-
olution produce more and more data that needs to be analyzed and
understood. The development of alternatives to the classic post process-
ing/visualization pipeline are therefore mandatory and discussed within
this paper, with a strong focus on in-situ visualization and in-situ data
processing. Although the work described here is work in progress, large
parts are already implemented and tested and on the verge to be deployed
in production mode.

1 Visualization in Climate Science

The output generated by current climate simulations is increasing both in size,
as well as in complexity. Both aspects pose equal challenges for the visualization
and an ideally interactive visual analysis of the simulated data. The increase in
complexity is due to a maturing of models that are able to better describe the
intricacies of the climate system, while the gain in size is a direct result of finer
spatial and temporal resolutions.

ICON, the ICOsahedral Non-hydrostatic model, that is jointly developed by
the Max Planck Institute for Meteorology (MPI-M) and the German Weather
Service (DWD), is a framework based on an icosahedral grid with an equal
area projection, on which data sets are sampled via primal triangular cells, dual
hexagonal cells and hybrid quadrilateral cells [1]. Figure 1 shows the horizontal
layout of the ICON grid, visualizing the relationship between cell (triangle) and
point (hexagon) data. The vertical layout is a rectilinear grid, that is sampled
more densely close to the Earth’s/Ocean’s surface. ICON – though unstructured
– has several advantages over other grids that are regularly used in climate sci-
ence: is has no computational poles, it allows for an easy refinement in local areas
and it provides a simplified coupling between its oceanic, atmospheric and land
components. Over the last years, ICON was extended to permit large eddy simu-
lations at cloud resolving resolutions in a regional setup as part of the HD(CP)2

project1 [2] to advance the understanding of clouds, cloud building and precipita-
tion processes. Although the data produced was quite large (22 million/3.5 billion
1 HD(CP)2 – HighHigh-Definition Clouds and Precipitation to advance Climate
Prediction.
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Fig. 1. Horizontal ICON grid layout showing triangles (cell data) and hexagons (point
data).

cells 2D/3D), a classic post visualization approach using ParaView employing a
parallel processing/visualization setup on several fat nodes was still possible.

Within the recently started EU funded project of ESiWACE22, the spatial –
and the temporal – resolution will be further refined down to 1.25 km globally,
resulting in approximately 360 million cells per level, and – depending on the
number of levels – around 30 to 60 billion cells in 3D, per variable and time step.
In order to explore, and actually be able to access such data, let alone writing
the data to disk, other workflows than the currently employed post visualization
are necessary. Examples include in-situ visualization in its many forms and in-
situ compression/transformation, which reorders and possibly also compresses
the data to make it accessible within a modified post visualization pipeline. This
paper illuminates these approaches from a climate science perspective, thereby
focusing explicitly on climate science visualization needs. It also discusses some
of the initial implementations and highlights some first results.

2 In-Situ Visualization

The idea of in-situ visualization dates back to the golden era of coprocessing in
the 1990s [3]. As a buzzword in HPC, the term in-situ is currently almost as
popular as data avalanche or I/O bottleneck, and reverberated through scientific
conferences and papers for years [3,4]. However, the majority of users still tried
to avoid it united in the hope that faster hardware could remedy the problems
before the need to resort to an in-situ visualization approach would become
immanent. So far, also the data analysis and visualization at DKRZ was entirely
based on the classic post visualization workflow, but this is – driven by projects
such as ESiWACE2 – about to change. Only one simulated day with 30 min

2 ESiWACE2 – Centre of Excellence in Simulation of Weather And Climate in
Europe.
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output, 75 levels and eight 3D plus twenty 2D variables – there are of course
many more variables in the model that would be worth looking at – would
accumulate to ≈43 TB (single precision), which is quite a bit, given the fact
that such weather simulations often run for several days, weeks, even months.

Several software packages, such as Visit [5] and ParaView [6,7], already pro-
vide in-situ visualization capabilities. Other exascale visualization initiatives,
such as ALPINE/Ascent [8] or SENSEI [9], directly build upon these tools and
extend their functionality. Due to the great familiarity and happiness with Par-
aView, we at DKRZ have experimented so far only with Catalyst, a VTK-based
and ParaView bound in-situ visualization framework [4,10]. ParaView is thereby
employed to generate a Python script, that later drives the in-situ processing
to create standard visualizations, to threshold and write out reduced data sets,
and to create a CINEMA database. The connection to the ICON model is imple-
mented using a so called Catalyst adaptor, compare also with Fig. 2, that handles
the data transfer from ICON (FORTRAN) to ParaView/Catalyst (C++). As use
cases, we see the following applications/data flows:

– Data reduction
– Verifying the simulation during run time
– Generation of data quicklooks and previews
– Feature detection, extraction and tracking

Once the data is on the C++ side of the adaptor, the data can flow in mul-
tiple directions, as are outlined in Fig. 2. Catalyst already supports a number of
those applications and comes with a variety of examples. Initially we planned
to base our in-situ developments onto the in-situ implementation developed by
the MPAS3 group [11]. However, as the code was quite complex and would have
required a lot of work to be customized for ICON, we decided to start the devel-
opment of a new Catalyst adaptor that is directly tailored to the ICON model
from scratch. This proved to be the right decision, as only a few hundred lines
of FORTRAN and C++ code, along with some minor modifications within the
ICON code itself, already allowed us to run first in-situ visualization experiments.
In-situ visualization can be performed either loosely or tightly coupled, that is
on dedicated visualizations nodes, or on the same compute nodes on which the
simulation is run. We have not yet experimented with different configurations,
and so far have only used the tightly coupled setup with an equal number of
visualization/simulation processes per node. The data, grid information as well
as actual data variables, are transferred from FORTRAN to C++ as zero copy
arrays.

The maximum number of nodes that we used so far for parallel simulation/in-
situ processing is 540 nodes with 4320 MPI processes, i.e. 1/6 of our HPC cluster.
ICON atmosphere was used in a global setup with 2.5 km horizontal resolution
and 75 height levels, thereby thresholding two 3D variables liquid cloud water
and cloud ice, which were written out to disk. A threshold of 1.0 × 10−7 kg kg−1

(in kilogram water/ice per kilogram air) was applied to discard the empty cells,
3 MPAS – Model for Prediction Across Scales.
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Fig. 2. In-Situ visualization/processing pipeline using ParaView/Catalyst.

and save only those that are above this threshold. This resulted in a mesh reduc-
tion from 6.5 billion cells down to ≈150 million cells per 3D variable, which can
now be handled easily in a classic post analysis/visualization workflow. Figure 3
shows a visualization of both variables along with an annotation of the Earth’s
orography. Additionally, a standard visualization (single snapshot per time step)
was created, along with a CINEMA database to create quicklooks and previews
of the data.

The additional time required to initialize and actually do the in-situ visu-
alization is almost neglectable in respect to the time required to perform the
simulation itself. The initialization of the model, as described in the run above,
takes 71 s, from which Catalyst needs 6.1 s (≈11%). The first workload, i.e. the
transfer of the grid data and Catalyst initialization takes an additional 1.6 s. The
model needs an average of about 408 s (total: 408.027 s) to advance the model
one time step, from which Catalyst uses on average 0.1 s (max 0.8 s) (total:
12.000 s (≈3%)) to create a standard visualization (single image) and to write
out the two thresholded 3D variables.

CINEMA is a useful extension for ParaView developed by the Los Alamos
National Laboratory and allows an image-based analysis and visualization of
large data sets by creating multiple views of the data per timestep and storing
these images together with a data description. Several applications exist to effi-
ciently access this CINEMA database, including a web based viewer [12]. But
the evaluation of CINEMA is unfortunately still incomplete, as several issues
exist that are also documented on Kitware’s Github website4. Although the
new SPEC-D CINEMA database format is formally implemented, currently only
SPEC-A databases are written out and have at the time of writing still to be
manually converted into a SPEC-D database to be consistent with the current
CINEMA display tools5. Nevertheless, once working, CINEMA will be a great

4 https://gitlab.kitware.com/paraview/paraview/issues/.
5 https://cinemascience.github.io/downloads.html.

https://gitlab.kitware.com/paraview/paraview/issues/
https://cinemascience.github.io/downloads.html
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Fig. 3. Catalyst extracted 3D cloud ice (turquoise) and 3D cloud water (white) from
a 2.5 km global ICON atmosphere simulation.

addition, as it allows scientists to quickly browse through large piles of data
(images) in the search for the proper data file to be analyzed in more detail.
Other researchers have also utilized the CINEMA database to perform a feature
tracking of mesoscale ocean eddies using contours and moments directly on the
image data [13].

Another direct advantage of using ParaView/Catalyst as in-situ framework
is the possibility to visualize the simulated data live while the simulation still
runs on the supercomputer. This allows to precisely track and supervise the
progress of the simulation, and to abort in cases of errors. However, in practice,
this feature will probably only be used in specific setups and for long simulations,
as a batch scheduler maintains the processing of the simulations.

2.1 Feature Detection and Tracking

In-situ processing does not necessarily need to be limited to the generation of
images and the storage of reduced data sets alone, but can easily be extended to
a detection, extraction and tracking of certain interesting features or structures.
A popular object of study in the atmospheric sciences are clouds. Meteorologists
are especially interested in their formation, as well as development and evolution
over time, i.e. the transition from one type of cloud into another. Clouds and
the various cloud types are listed and described in the cloud atlas6 and can be
characterized using boundary conditions defined through specific levels of cloud
water/ice, pressure, temperature, humidity, rain and upward wind velocity, as
are identified by the International Satellite Cloud Climatology Project ISCCP
[14]. Figure 4 shows a visualization of an in-situ cloud classification based on
a regional (Germany centered) simulation at cloud resolving scales at 156 m

6 http://www.wolken-online.de/wolkenatlas.htm.

http://www.wolken-online.de/wolkenatlas.htm
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Fig. 4. ISCCP in-situ cloud classification using HD(CP)2 data [2] with stratus (ST),
stratocumulus (SC), sltostratus (AS) and sltocumulus (AC) clouds.

from within the HD(CP)2 project [2]. It shows four different cloud types over
northern Germany: Stratus (ST), Stratocumulus (SC), Altostratus (AS) and
Altocumulus (AC). This cloud classification is thresholded, i.e. the empty cells
(no clouds) are discarded, and efficiently stored as VTI (VTK Integer Array) file
series on disk, to be later loaded and displayed in ParaView.

Another example that we have not yet implemented, but which has been
shown by others to be beneficial [11], is an in-situ eddy census from a high reso-
lution ocean simulation, ideally accompanied with the extraction and display of
additional quantitative information, such as the size, duration, speed and move-
ment direction of eddies, as well as how much energy and mass they transport.

3 Progressive Data Visualization

One of the drawbacks of an in-situ visualization/processing approach is the indis-
pensable need of a priori knowledge to extract and visualize the right features
in the simulated data. Without the domain knowledge where to find interesting
features, and which isolevels and/or thresholds to choose, an in-situ visualiza-
tion is likely to fail. An iterative approach is of course possible, but both time
and labour intensive. The finer spatial and temporal resolutions of large scale
simulations, also exhibit new – possibly previously unresolved – processes and
correlations within the data. The thresholds and isolevels used in simulations
at lower resolution can provide guidance, but are probably not a perfect fit at
higher resolutions. To correctly find and visualize those new features and struc-
tures, one needs to work on the actual data in its original resolution, but the data
needs to be transformed and reordered to make the data accessible. To achieve
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Fig. 5. Exemplary application of DHWT on a low resolution ICON ocean data set.
Centroids of hexagons (top), edge midpoints in one direction (middle), centroids of
triangles (bottom). Each row (left to right) shows original data, conversion to a tri-
angular grid via icosahedral maps, applying DHWT on the converted grid to obtain
coarse data, and reconstructed data using two different thresholds: 10% discarded/90%
preserved and 95% discarded/5% preserved.

this, a progressive data visualization approach based on a level-of-detail (LoD)
rendering is required. In here, the data is decomposed into different resolutions
(LoD) and possibly also compressed before it is written out to disk in a way that
facilitates a later interactive access. After the data has been written to disk, a
special visualization application that supports progressive LoD rendering is used
for a classic user-driven post visualization of the data [15]. Such an application
accesses data in an out-of-core fashion, and only the data that is relevant to the
current level of detail and which is also contained in the current view frustum is
fetched, visualized and displayed.

3.1 Wavelet Decomposition and Compression

A classic tool for a level of detail decomposition of large data sets are wavelets.
There are numerous examples on how to use wavelets to perform an efficient
LoD based visualization of large data sets, yet those primarily focus on regular
rectilinear grids [15,16]. For irregular grids, such as ICON, this becomes a bit
more difficult, but it is, nevertheless, still possible. Here, so called icosahedral
maps can be employed that are designed to fit the geometry of different cell
configurations within the ICON model, as we have discussed in our prior pub-
lication [17]. As this research is still work in progress, this section summarizes
our previous accomplishments, and outlines our current efforts in this direction.
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Icosahedral maps contain the connectivity information in ICON in a highly
structured two-dimensional hexagonal representation and facilitate the execution
of a multi-resolution analysis on ICON data by applying a hexagonal version of
the discrete wavelet transform. A global ICON grid is thereby broken down into
ten diamonds, in which the data can be accessed and processed more easily [17],
see also Fig. 6:

Fig. 6. Global ICON grid unfolded into a net consisting of ten diamonds. The vertex
information of each diamond is stored in a 2D rectangular grid that corresponds to the
hexagonal lattice associated with that diamond.

Figure 5 shows the principle of this wavelet decomposition for all three ICON
grids using a low resolution global ocean simulation. The left column shows the
original data, followed by a mapping onto a triangular grid (icosahedral maps), a
coarsened grid (lower level of detail) and two reconstructions. In order to observe
how the data responds to compression, a quantile thresholding was applied,
keeping only those detail coefficients whose magnitudes falls within a specified
percentile range. The last two columns in Fig. 5 shows that the wavelet responds
very well to compression, i.e. the discarding of certain details. The reconstruction
for two different thresholds – 10% and 95% – is shown, and displays that even
a very aggressive compression of 95% – i.e. only 5% of the details are retained
– is feasible. While this is still only work in progress, it clearly shows that a
wavelet based decomposition and lossy compression of ICON data is possible and
desirable. The here described wavelet based decomposition of the data would be
performed in-situ, and will be implemented on the C++ side of the Catalyst
adaptor in the form of an additional data flow branch, as is already outlined
in Fig. 2. Researchers at NCAR in Boulder, Colorado, have looked into possible
gains and losses by using various lossy compression algorithms, and shown that
compression ratios of 1:5 are feasible, without even impairing the statistical
signal of the data [18,19].

VAPOR, an interactive 3D visualization platform that is also developed at
NCAR can be used to load and display such wavelet decomposed data sets. In
fact, VAPOR features the so called VAPOR Data Collection (VDC) data model
that allows users to progressively load and visualize their data, thus allowing an
interactive visualization of terascale data sets on commodity hardware [15,20].
Initially designed to handle regular rectilinear grids only, it was more recently
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extended to additionally support the UGRID netCDF-CF7 standard, i.e. allow-
ing one to also load and display model data on irregular grids, such as MPAS
and ICON simulation output.

4 Summary and Conclusion

We have discussed the current status of in-situ visualization/processing at
DKRZ, along with a few other ideas to handle some of the extremely large data
sets that are produced by current climate simulations. The work presented is
still work in progress, and although currently none of the work discussed is used
in production mode, it is expected that the in-situ visualization and processing
techniques will transition within a few weeks once workflows that are easy to
setup and deploy by climate scientists have been devised. After that, other in-
situ feature detection and tracking, such as the discussed ocean eddy census, will
be added. Steering, as is developed as part of the exascale visualization initiative
SENSEI, is also interesting, but probably a topic that lies – at least for us – a
bit further into the future [9]. The wavelet decomposition and compression that
was outlined in the previous Sect. 3 is implemented as standalone prototype, and
needs to be relocated and further optimized into the Catalyst adaptor.

Other interesting aspects include the in-situ generation of high-quality visu-
alizations using raytracing. As our current cluster is based on Intel CPUs, with
relatively outdated GPUs, our current choice is OSPRay. Nevertheless, both
OSPRay and OptiX are able to create superior quality renderings and are already
used at DKRZ within the conventional post visualization workflow [21,22]. A
transition of raytracing to in-situ will probably also take some more time.

Furthermore, just a visual display and analysis of large simulations may not
be very useful in the near future, as the data is so massive that a single user will
have problems finding and detecting the interesting features in the visual output.
Here the currently popular machine learning might prove useful to automatically
check the plausibility of a simulation, and also to identify outliers and extreme
weather/climate events and direct the attention of the researcher directly onto
those regions/time steps.
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622 N. Röber and J. F. Engels

20. Clyne, J., Mininni, P., Norton, A., Rast, M.: Interactive desktop analysis of high
resolution simulations: application to turbulent plume dynamics and current sheet
formation. New J. Phys. 9, 301 (2007)

21. Wald, I., et al.: OSPRay - a CPU ray tracing framework for scientific visualization.
IEEE Trans. Vis. Comput. Graph. 23(1), 931–940 (2017)

22. Parker, S.G., et al.: OptiX: a general purpose ray tracing engine. ACM Trans.
Graph. 29, 66 (2010)


	In-Situ Processing in Climate Science
	1 Visualization in Climate Science
	2 In-Situ Visualization
	2.1 Feature Detection and Tracking

	3 Progressive Data Visualization
	3.1 Wavelet Decomposition and Compression

	4 Summary and Conclusion
	References




