
Leveraging NVIDIA Omniverse for In
Situ Visualization

Mathias Hummel(B) and Kees van Kooten

NVIDIA, Santa Clara, USA
{mathiash,kvankooten}@nvidia.com

Abstract. Typical in situ visualization approaches involve rendering
images of the simulation data in step with the simulation itself, using in
situ visualization tools such as ParaView Catalyst, VisIt libsim, or SEN-
SEI. For these approaches, one has to determine visualization parameters
such as camera perspective, color maps, or scene properties in advance.
The resulting frames can later be combined to produce animations, but
leave little room for improving the presentation.

Alternatively, simulation data can be distilled in situ to a geometric
representation, which is then transferred to a workstation and used for
live exploration and visualization.

Producing high-quality animations, for example for outreach pur-
poses, typically requires a somewhat tedious process of exporting the
geometry to different formats and postprocessing using dedicated mod-
elling, rendering, or compositing software.

We propose a method that allows interactive, high-quality visualiza-
tion of distilled simulation geometry. Omniverse is NVIDIA’s collabora-
tion platform for 3D production pipelines. It is integrated with a num-
ber of freely and commercially available 3D software packages and game
engines and enables content creators to work on different aspects of mod-
els or entire scenes simultaneously.

By integrating ParaView and Catalyst with the Omniverse, the visu-
alization geometry becomes immediately accessible to a number of 3D
content authoring and rendering tools without the requirement of inva-
sive software changes in situ or tedious postprocessing and conversion
workflows.

Since Omniverse can directly communicate with game engines, the
visualization can be augmented using advanced features such as game
physics simulation to improve insight and enhance intuition. We demon-
strate this by placing architectural building models on a surface that is
deformed by an earthquake-like wave. This makes it possible to imme-
diately assess the impact of the earthquake on buildings in a live, inter-
active way, while leveraging the advanced rendering capabilities of the
game engine.

Keywords: In situ visualization · NVIDIA Omniverse · ParaView ·
Catalyst

c© Springer Nature Switzerland AG 2019
M. Weiland et al. (Eds.): ISC 2019 Workshops, LNCS 11887, pp. 634–642, 2019.
https://doi.org/10.1007/978-3-030-34356-9_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34356-9_48&domain=pdf
https://doi.org/10.1007/978-3-030-34356-9_48


Leveraging NVIDIA Omniverse for In Situ Visualization 635

1 Introduction

In the past years, the available computing capability has been outpacing the
capacity for I/O. This leaves scientists no choice but to severely limit the amount
of data stored as the simulation runs. In situ visualization is a broad term for
approaches that do not rely on writing simulation data to persistent storage and
then transferring them elsewhere (e.g. a dedicated visualization cluster or even
a workstation), but instead perform visualization tasks in situ, alongside the
simulation.

One approach to in situ visualization is to render images as simulation data
are produced, alongside with the simulation. Once an image (or a set of images)
is available, the original data can be discarded. The produced images can then
be collected and combined into animated videos. With such an approach, funda-
mental parameters such as camera positions and angles, color coding of physical
quantities, and the visualization pipeline itself, have to be set in advance of the
simulation. Since the full data are no longer available, there is little opportunity
for improving the visualization after the fact.

A different approach consists of setting up a visualization pipeline, and then
storing the output of this pipeline. The result is a time series of geometries, which
are typically consiberably smaller in size than the original simulation output, and
can, therefore, be produced at a higher temporal frequency. These geometries
are then available to be used with established visualization tools.

Offline visualization purposes including outreach, presentation, and collab-
orative exploration in virtual reality, are typically facilitated by 3D authoring
tools and rendering engines, which are not themselves geared towards scientific
visualization. Therefore, they typically require a sequence of file transfers and
format conversions before the data can be rendered. Especially in the presence
of time-varying data, this process can be tedious and time-consuming.

In the area of media and entertainment, the NVIDIA Omniverse collabo-
ration platform aims to solve similar issues by integrating with a number of
established tools, game engines, and renderers [13]. We have implemented the
Omniverse bridge for in situ visualization, an adapter that integrates ParaView
Catalyst with the Omniverse.

Section 2 describes the in situ visualization challenges that we are addressing
in this paper, and lists some relevant previous efforts at NVIDIA. In Sect. 3, we
provide a short overview of the NVIDIA Omniverse collaboration platform. The
main contribution of this paper, the Omniverse bridge, is introduced in Sect. 4.
We present two examples of applying the Omniverse bridge to visualization data
in Sect. 5, before concluding our results in Sect. 6.

2 In Situ Frameworks and Workflows

A number of in situ frameworks are available to researchers that make it possi-
ble to attach widely used visualization tools to simulation codes with minimal
manual effort [5]. Typically, a small piece of adapter code has to be written that



636 M. Hummel and K. van Kooten

runs in step with the simulation and, for each time step (or with a predefined
frequency), converts output of the simulation to a format that can be ingested
by the visualization software and fed into a visualization pipeline. Examples for
such tools include libSim [10], which interfaces with VisIt [7], Catalyst [4] for
ParaView [3], and SENSEI [2], which provides a more general approach that
can be used in conjunction with a number of existing in situ frameworks. For
each time step ingested by the in situ framework, a visualization pipeline is
executed that applies a range of filters, and produces distilled geometry for the
purpose of visualization. One option is to render this geometry from a number
of predefined view angles, and for a variety of visualization parameters such as
color maps. The resulting images can be assembled into image databases for
interactive exploration, for example using ParaView Cinema [1]. Alternatively,
the distilled geometry can be streamed directly to a workstation for live viewing.
Also, it is often saved to persistent storage for later retrieval and processing.

simulation 3D authoring tools rendering softwarevisualization
pipeline

Fig. 1. For outreach and presentation, the output of the visualization pipeline (left) is
often converted and imported into 3D authoring applications (center), where a scene
with context geometry is put together. Finally, this scene is then rendered using cine-
matic rendering software. This example uses Blender [6] for scene setup and rendering.

For outreach and presentation purposes, where high visual quality is desired,
the distilled geometry is often converted to formats ingestible by established
3D authoring tools from the media and entertainment world. These authoring
tools are then used to set up scenes and animations, together with background
and context geometry. From this, high-quality images and videos are produced
using cinematic rendering software. Such an approach requires a number of data
transfer and format conversion steps, which can consume considerable amounts
of time and effort. These steps have to be repeated whenever changes are made
to the underlying data or visualization pipeline.

For interactive and collaborative exploration in virtual reality (VR), game
engines are often used to ensure sufficient performance and appealing visual
quality. These applications are fundamentally subject to the same challenges as
outreach and presentation, in that visualization geometry has to be transferred
and converted before being added to a VR scene. Achieving the desired interac-
tivity often requires even more work on the conversion side, by having to break
up a geometry into logical pieces and attaching certain physics properties.



Leveraging NVIDIA Omniverse for In Situ Visualization 637

Fig. 2. Left: NVIDIA IndeX can be used inside ParaView for scalable, high-quality,
GPU-accelerated volume rendering. Right: VisRTX provides GPU-accelerated path
tracing inside ParaView, enabling advanced rendering with reflections, global illumi-
nation, and physically-based MDL materials.

At NVIDIA, several efforts have been made previously that make high-
quality visualizations more accessible to researchers. Several technologies have
been integrated with ParaView, and can already aid in situ visualization. The
NVIDIA IndeX volume rendering framework [12] for scalable, GPU-accelerated
volume rendering can be directly used in conjunction with ParaView through
the NVIDIA IndeX Plugin (Fig. 2, left). VisRTX [15], an open source library
for scientific visualization rendering, leverages the NVIDIA OptiX hardware-
accelerated ray tracing engine [14] to produce high-quality, path-traced images.
The ParaView integration of VisRTX (Fig. 2, left) is scheduled to be publically
available as part of an upcoming release of ParaView. In addition, the Unreal
game engine was coupled with ParaView to support virtual reality applications
with visualization data without the need for separate transfer and format con-
version [9].

3 NVIDIA Omniverse

In the field of media and entertainment, artists often work independently on
different parts of a scene withing a movie or video game. They use a variety of
industry-standard tools to create and modify assets. Before such changes can be
collectively visualized, they have to be reconciled through a tedious process con-
sisting of data transfer, format conversions, imports, and compositing. NVIDIA
Omniverse, which was announced in March 2019, is a collaboration platform for
3D production pipelines that makes it possible for artists to work independently
on different parts of a scene, using a wide range of tools, while supporting live
updates and changes across those tools1. Assets such as geometry and materials
are accessed centrally through the Omniverse server, which can be run locally or
hosted externally. Content authoring and manipulation applications are directly
integrated with the Omniverse, so that changes are immediately reflected on all
other connected clients. In addition to content authoring tools, the Omniverse
is also integrated with game engines and cinematic rendering software, which
virtually eliminates the need for tedious data transfer and format conversion.
1 Further information about NVIDIA Omniverse is available at https://developer.

nvidia.com/nvidia-omniverse.

https://developer.nvidia.com/nvidia-omniverse
https://developer.nvidia.com/nvidia-omniverse


638 M. Hummel and K. van Kooten

#usda 1.0

(

upAxis = "Y"

defaultPrim = "mesh"

)

def Mesh "mesh"

{

uniform bool doubleSided = 1

int[] faceVertexCounts = [3, 3]

int[] faceVertexIndices = [0, 1, 2, 0, 2, 3]

normal3f[] normals = [(0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1)]

point3f[] points = [(-1, 1, 0), (-1, -1, 0), (1, -1, 0), (1, 1, 0)]

}

Fig. 3. A minimal example of a USD mesh in the human-readable, text-based usda

format.

To achieve this, assets and scenes are represented using an extended version
of Pixar’s Universal Scene Description (USD) [17]. Figure 3 shows a minimal
example of the human-readable usda format; typically, assets are stored and
transferred in binary or compressed form. Changes are pushed to the Omni-
verse through incremental updates. In addition, the Omniverse supports mate-
rial descriptions written in the Material Definition Language (MDL) [16] for
physically based materials. The Omniverse comes with a reference viewing and
editing application, Omniverse Kit, which utilizes the newest features of current
GPUs to produce high-quality visuals at maximum performance.

4 The Omniverse Bridge

Some of the challenges addressed by the Omniverse in media and entertainment
also apply to scientific visualization, especially when data transfer and format
conversions are required. We propose to utilize the Omniverse as a ‘Rosetta
Stone’ for in situ visualization geometry, to allow the direct combination of

Omniverse
BridgeVTK

PolyData
Texture
Time Stamp

ParaView / Catalyst

Omniverse

USD

Fig. 4. The Omniverse bridge converts distilled visualization geometry from the in situ
visualization framework to USD, and pushes the results into the Omniverse.



Leveraging NVIDIA Omniverse for In Situ Visualization 639

scientific visualization data with creative tools, assets, and engines. To this end,
we have implemented the Omniverse bridge, an adapter that connects in situ
visualization tools with the Omniverse. Distilled geometry, textures, and color
maps are converted on-the-fly to USD and pushed to the Omniverse as they
become available (Fig. 4). If the visualization geometry is annotated with time
step information, time steps are represented as time samples in USD.

Currently, the implementation is integrated with ParaView, where the Omni-
verse bridge acts as a specialized render view. Any geometry that is flagged to be
‘rendered’ using the Omniverse bridge render view is automatically converted to
USD and transferred into the Omniverse. In a Catalyst script, this view can be
registered with the coprocessor in the same way as a regular render view would
be used to render and save images.

Even though the current implementation supports ParaView and Catalyst,
the concept of the Omniverse bridge itself is sufficiently generic to make inte-
gration with other in situ visualization frameworks straight-forward.

5 Examples

To provide a first impression of how the Omniverse can be used to address the
mentioned challenges of in situ visualization, we have applied the Omniverse
bridge to two example scenarios.

Airliner Flow Simulation: The Airliner example consists of an OpenFOAM [8,
18] simulation of flow around an A320 jet aircraft. ParaView Catalyst was used
to compute an isosurface of the pressure field in situ, which was then pushed
into the Omniverse using the Omniverse bridge together with the aircraft bound-
ary mesh. The visualization geometries from the Omniverse were combined with
some planes serving as contextual background in Omniverse Kit. A polished
aluminum material, described in MDL, was applied to the aircraft mesh. When
the visualization geometry that is fed into the Omniverse bridge is modified, for
example by choosing a different isovalue, the changes are automatically reflected
in Omniverse Kit. Advanced rendering methods such as ray traced reflections,
ray traced ambient occlusion, and ray traced shadows provide high-quality visu-
als at real-time frame rates.

“Earthquake:” The “Earthquake” sample is not based on an actual simulation,
but instead employs a programmable filter inside ParaView to apply a time-
varying, wave-shaped distortion to a planar surface, which is then pushed into
the Omniverse (Fig. 5, bottom row). As the filter produces time samples of the
surface, the USD representation is updated by the Omniverse bridge, and differ-
ential updates are transferred to the Omniverse server. A client, such as Omni-
verse Kit, can play back all currently available time samples of the surface. As
additional time samples arrive, these are incorporated into the animation.

In Omniverse Kit, a number of buildings are placed on the ground surface.
Both the building models and the ground surface are registered with the particle-
based NVIDIA FleX engine for real time physics simulation [11]. Playing back



640 M. Hummel and K. van Kooten

Fig. 5. Two examples making use of the Omniverse bridge. Top: An isosurface of the
pressure volume and the airliner boundary mesh, both pushed into the Omniverse by
the Omniverse bridge, are visualized using the Omniverse Kit application. Materials
and background geometry were added in the Omniverse Kit; the underlying visual-
ization geometry is updated when it changes in ParaView/Catalyst. Bottom row: A
programmable filter is used in ParaView to generate a time-varying, wave-shaped dis-
tortion on a planar surface (left). The resulting, time-varying mesh is pushed into
the Omniverse using the Omniverse bridge. The mesh is used as an animated ground
model in Omniverse Kit (right), where a number of physics-enabled building models
are attached to it (Map Data: Google, GeoBasis-DE/BKG). As the animation is played
back, the wave passes underneath the buildings and causes them to sway.



Leveraging NVIDIA Omniverse for In Situ Visualization 641

the surface animation results in the base of the buildings being deformed as the
ground wave passes underneath them. The physics simulation model then causes
the buildings to sway and wobble, providing an immediate, visual impression of
how the ground wave’s impact.

6 Conclusion and Future Work

We have discussed some of the challenges associated with in situ visualization,
specifically when it comes to data transfer and format conversion for live visual-
ization, outreach, and presentation. We have shown how the NVIDIA Omniverse
collaboration platform can help address these challenges by acting as a ‘rosetta
stone’ that removes the need for tedious transfers and conversions. As a proof
of concept, we have introduced the Omniverse bridge, which interfaces with in
situ visualization frameworks such as ParaView Catalyst. We have provided two
examples to show that, using the Omniverse bridge, visualization geometry can
be pushed into the Omniverse with minimal additional effort. We have shown
that this geometry can be immediately accessed, combined with additional con-
text geometry and materials, and rendered in another Omniverse client. In addi-
tion, we have shown how time-varying geometry produced in situ and pushed
into the Omniverse can serve as input for real time game physics simulation.

In the future, we plan to apply the Omniverse bridge to more elaborate
settings, for example involving live collaboration, large geometries, and virtual
reality. Further, we would like to discover applications of game physics engines,
involving features such as rigid bodies and fluid simulation, in real-world appli-
cations.

Acknowledgments. The authors would like to thank CFD SUPPORT LTD. for pro-
viding the Airliner OpenFOAM case: https://www.cfdsupport.com/download-cases-
a320.html.

References

1. Ahrens, J., Jourdain, S., OLeary, P., Patchett, J., Rogers, D.H., Petersen, M.:
An image-based approach to extreme scale in situ visualization and analysis. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2014, pp. 424–434, November 2014. https://
doi.org/10.1109/SC.2014.40

2. Ayachit, U., Whitlock, B., Wolf, M., Loring, B., Geveci, B., Lonie, D., Bethel,
E.W.: The SENSEI generic in situ interface. In: 2016 Second Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization (ISAV), pp.
40–44, November 2016. https://doi.org/10.1109/ISAV.2016.013

3. Ayachit, U.: The ParaView Guide: A Parallel Visualization Application. Kitware
Inc., New York (2015)

4. Ayachit, U., et al.: ParaView catalyst: enabling in situ data analysis and visualiza-
tion. In: Proceedings of the First Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization, ISAV 2015, pp. 25–29. ACM, New York
(2015). http://doi.acm.org/10.1145/2828612.2828624

https://www.cfdsupport.com/download-cases-a320.html
https://www.cfdsupport.com/download-cases-a320.html
https://doi.org/10.1109/SC.2014.40
https://doi.org/10.1109/SC.2014.40
https://doi.org/10.1109/ISAV.2016.013
http://doi.acm.org/10.1145/2828612.2828624


642 M. Hummel and K. van Kooten

5. Bauer, A.C., et al.: In situ methods, infrastructures, and applications on high
performance computing platforms. Comput. Graph. Forum 35(3), 577–597 (2016).
https://doi.org/10.1111/cgf.12930

6. Blender Online Community: Blender - a 3D modelling and rendering package.
Blender Foundation (2019). http://www.blender.org

7. Childs, H., et al.: VisIt: an end-user tool for visualizing and analyzing very
large data. In: High Performance Visualization-Enabling Extreme-Scale Scientific
Insight, pp. 357–372, October 2012

8. Jasak, H., Jemcov, A., Tukovic, Z., et al.: OpenFOAM: a C++ library for complex
physics simulations. In: International Workshop on Coupled Methods in Numerical
Dynamics, vol. 1000, pp. 1–20. IUC Dubrovnik Croatia (2007)

9. van Kooten, K.: Bridging scientific visualization and unreal VR. In: Sherman, W.R.
(ed.) VR Developer Gems, chap. 9. AK Peters/CRC Press (2019)

10. Kuhlen, T., Pajarola, R., Zhou, K.: Parallel in situ coupling of simulation with
a fully featured visualization system. In: Proceedings of the 11th Eurographics
Conference on Parallel Graphics and Visualization (EGPGV) (2011)

11. NVIDIA: FleX. https://developer.nvidia.com/flex. Accessed 19 July 2019
12. NVIDIA: IndeX. https://developer.nvidia.com/index. Accessed 19 July 2019
13. NVIDIA: Omniverse. https://developer.nvidia.com/nvidia-omniverse. Accessed 19

July 2019
14. NVIDIA: OptiX. https://developer.nvidia.com/optix. Accessed 19 July 2019
15. NVIDIA: VisRTX. https://github.com/NVIDIA/VisRTX. Accessed 19 July 2019
16. NVIDIA: NVIDIA material definition language 1.3 (2016)
17. Pixar: Pixar animation studios open sources Universal Scene Description (2016).

https://graphics.pixar.com/usd/docs/Open-Source-Release.html. Accessed 19
July 2019

18. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to compu-
tational continuum mechanics using object-oriented techniques. Comput. Phys.
12(6), 620–631 (1998)

https://doi.org/10.1111/cgf.12930
http://www.blender.org
https://developer.nvidia.com/flex
https://developer.nvidia.com/index
https://developer.nvidia.com/nvidia-omniverse
https://developer.nvidia.com/optix
https://github.com/NVIDIA/VisRTX
https://graphics.pixar.com/usd/docs/Open-Source-Release.html

	Leveraging NVIDIA Omniverse for In Situ Visualization
	1 Introduction
	2 In Situ Frameworks and Workflows
	3 NVIDIA Omniverse
	4 The Omniverse Bridge
	5 Examples
	6 Conclusion and Future Work
	References




