
Distributed Out-of-Core Approach
for In-Situ Volume Rendering

of Massive Dataset

Jonathan Sarton, Yannick Remion, and Laurent Lucas(B)

Université de Reims Champagne-Ardenne, CReSTIC, Reims, France
{jonathan.sarton,yannick.remion,laurent.lucas}@univ-reims.fr

Abstract. This paper proposes a method that allows a fluid remote
interactive visualization of a terabytes volume on a conventional work-
station co-located with the acquisition devices, leveraging remote high
performance computing resources. We provide a study of the behav-
ior of an out-of-core volume renderer, using a virtual addressing sys-
tem with interactive data streaming, in a distributed environment. The
method implements a sort-last volume renderer with a multi-resolution
ray-guided approach to visualize very large volumes of data thanks to an
hybrid multi-GPUs, multi-CPUs single node rendering server.

Keywords: Interactive visualization · Large volume data ·
Out-of-core · Multi GPUs · Biomedical imaging

1 Introduction

Several scientific fields rely on the visualization of data represented in the form of
3D regular voxel grids. The characteristics of this representation are particularly
well suited to the architecture of modern GPUs. These have become essential
to benefit from an interactive visualization of this type of data, with a good
rendering accuracy. However, the increase in the size of volume data in science,
and particularly in biomedical imaging, is very rapid. The latter is faster than
the increase in the physical capacity of the on-board memory on GPUs. One
solution to address this problem is to design an out-of-core approach that allows
on-demand data streaming of small chunks (bricks) of a large volume to the GPU
during interactive visualization. Although these methods are now effective, data
transfers to the GPU are still a bottleneck and can be restrictive to allow a
fully pleasant interactive visualization. High-performance computing environ-
ments can help to reduce this bottleneck. In addition to offering an increase in
computing power, useful for interactivity and visualization quality, they increase
storage capacities on several GPUs and allow to distribute the load of transfers.
The presented method propose a distributed out-of-core management that offer
interactive data streaming on heterogeneous node, to allow scientists to visualize
large volume data directly after their acquisition from their usual workstation.
c© Springer Nature Switzerland AG 2019
M. Weiland et al. (Eds.): ISC 2019 Workshops, LNCS 11887, pp. 623–633, 2019.
https://doi.org/10.1007/978-3-030-34356-9_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34356-9_47&domain=pdf
https://doi.org/10.1007/978-3-030-34356-9_47


624 J. Sarton et al.

Contributions: The use of an out-of-core approach with a virtual addressing
system based on a page table for multi-resolution volume is particularly well
suited for the visualization of very massive volume data [7]. However, to our
knowledge, any work has been carried out on the possibilities of using this struc-
ture in high-performance computing environments for all stages of the pipeline
allowing in-situ visualization. In this paper, we present a distribution method
to use such out-of-core data structure in distributed environments, on single
multi-CPUs, multi-GPUs compute nodes. We address the distribution of vir-
tual addressing space in very large volumes, in line with a distributed sort-last
rendering approach for volume ray-casting. Our system is composed of a:

– GPU-based multi-resolution volume ray-casting with a ray-guided approach
to render large volume data;

– complete out-of-core pipeline from disk to GPU with a multi-level, multi-
resolution page table hierarchy, completely managed on GPU;

– multi-GPUs sort-last volume renderer and a distributed strategy of the out-
of-core solution on a multi-CPUs, multi-GPUs single node server;

– remote solution to display, on a thin client, a high frame rate coming from a
high-performance rendering server.

2 Related Work

Volume ray-casting, introduced and improved by Levoy [9,10], is nowadays the
most intuitive and efficient approach to apprehend direct volume rendering and
solve the volume rendering equation [12]. Its implementation on GPUs was first
proposed in 2003 [8,17] and then improved in 2005 [19,20], taking advantage of
hardware advances and introducing optimization techniques.

Afterward, some work has focused on out-of-core approaches for rendering
of large volumes that exceed the amount of memory available on the GPU and
even on the CPU. Gobbetti et al. [6] were among the first to propose an out-
of-core approach for volume ray-casting on GPU, based on a multi-resolution
octree. Crassin et al. [3] also use an octree and provide a very efficient ray-
guided pipeline for rendering large voxelized scenes. While many works in this
context have focused on a tree structure to address an entire multi-resolution
volume with out-of-core storage, Hadwiger et al. [7] introduced a hierarchical
page table for efficient virtual addressing. They show that their structure is
more suitable than an octree for very large volumes of data. Fogal et al. [4]
provide a detailed analysis of ray-guided out-of-core approaches on GPU. For
more details, we can also refer to a complete state of the art [1]. Parallel vol-
ume rendering has also been studied to distribute the computational workload
over different units and thus operate on multi-GPUs architectures for efficient
rendering [21]. Molnar et al. [13] proposed a classification of parallel rendering
methods. Although some work in multi-GPUs volume rendering is focused on
a sort-first approach [14], most methods are oriented towards a sort-last app-
roach [11,15]. In addition to providing a computational scaling, the latter also
provides a memory management scaling. This aspect is the main bottleneck in



Distributed Out-of-Core Volume Rendering of Massive Dataset 625

Fig. 1. Pipeline overview. Example of our remote out-of-core rendering pipeline on
a 4-GPUs and 2-CPUs server. This pipeline includes the following steps: (a) Virtual
multi-resolution volume distribution (b) Out-of-core virtual addressing structure and
brick cache (c) Ray-guided volume renderer (d) Local rendering pixel buffer (e) GPUs
communications for sort-last compositing (f) H.264 GPU compression.

an on-demand streaming context for interactive rendering of very large volumes
of data. Finally, there are very few methods that combine multi-GPUs render-
ing with an out-of-core approach. Fogal et al. [5] propose an out-of-core volume
renderer with an MPI-based compositing to render large datasets on multi-node
clusters up to 256 GPUs. Beyer et al. [2] present a distributed version on 4 GPUs
of an octree-based virtual addressing system to visualize a very large volume.

Compared with these works, we propose to introduce a distribution method
of an out-of-core approach based on an efficient GPU virtual addressing and
caching system [18] on multi-GPUs, multi-CPUs single node server. Combined
with a ray-guided volume renderer with sort-last compositing for interactive
visualization on datasets exceeding terabytes.

3 Our Method

3.1 Out-of-Core Approach

Figure 1 summarizes the proposed pipeline. It includes an out-of-core data man-
agement in order to handle very large volumes that can exceed the amount
of GPU and CPU memory. It is based on a virtual addressing system using a
multi-level multi-resolution page table hierarchy and a brick cache on GPU. The
underlying structure, implemented in GPU texture memory, is fully maintained
on the GPU to optimize the communication load with the CPU [18]. This system
is able to interactively address a whole multi-resolution volume decomposed into
small voxel bricks entirely stored on disk with compression. The bricks required
for interactive visualization are streamed to the GPU cache when requested by
the application. On the GPU, the navigation in the multi-resolution volume is
performed in a normalized virtual volume. The full parallel GPU implementa-
tion of our virtual addressing structure management includes a brick request



626 J. Sarton et al.

manager. This one takes care of sending to the CPU a list containing the IDs
of the bricks required by the interactive application during its whole execution.
The streaming of these bricks to the GPU cache is performed asynchronously
with the GPU visualization step in order to maintain a constant interactivity
for the user. A dedicated CPU thread manages the lists of the required bricks
to provide them to the GPU after reading and decompressing. Unlike [7] and
[18], we are interested here in the distribution of this out-of-core management
solution on a heterogeneous node that includes several GPUs and CPUs with an
approach including remote rendering allowing a complete in-situ visualization
pipeline.

3.2 Sort-Last Distributed Ray-Casting

The bottleneck of a distributed renderer combined with an out-of-core system
lies in the heavy loads of the voxel bricks, streamed to the different rendering
units, and in the updates of their associated GPU caches. In this context, a sort-
last approach is more appropriate than a sort-first approach to minimize these
issues. By pre-determining a sub-domain of the volume on each GPU, this allows
limited CPU/GPU and GPU/GPU data transfers and avoids cache flushes.

In association with our sort-last approach, we propose to use a multi-
resolution ray-guided volume renderer that efficiently and naturally integrates
our out-of-core loading method. This approach ensures to load only the useful
bricks on the different GPUs, according to the sampling along the rays in the
volume. Our renderer is also suitable for the multi-resolution volume representa-
tion by choosing an adapted level of detail for each sample based on its distance
to the camera. This allows us to adapt the sampling step, and thus reduce the
number of texture memory lookup for areas containing less detail.

In our system, the compositing step, involved by the sort-last rendering, is
implemented on GPU with a basic approach applying the OVER operator [16]
in front-to-back. At each rendering pass, the local pixel buffer of each GPU is
communicated to the pre-defined master GPU, in charge of the compositing.
We propose to initiate these transfers from the master GPU, with peer-to-peer
communications using CUDA Unified Virtual Addressing system if possible, i.e.
if the GPUs are in the same addressing space as the master GPU. Otherwise,
our strategy switches to explicit transfers via the CPUs.

3.3 Multi-GPUs Virtual Addressing

The volume partitioning is done on a normalized virtual volume, used on
each GPU to navigate through all the multi-resolution volume and to virtu-
ally access to any voxels (Fig. 1(a)). This distribution only consists of restricting
the addressing range in the normalized virtual volume. This method makes it
possible to implicitly distribute the entire multi-resolution representation of the
volume. The virtual addressing structure, used to ensure access to all voxels of
a very large volume, is distributed as follows. Each GPU has its own instance of
this structure with its own brick cache, completely independent of other GPUs.



Distributed Out-of-Core Volume Rendering of Massive Dataset 627

However, a single virtualization configuration is used for all the GPUs. Thus,
the size of the bricks, blocks in the page table and the number of virtualiza-
tion levels in the structure do not differ from one unit to the other. We also
implement a single common CPU brick cache. We use a multi-threaded strategy
with OpenMP on the different CPU(s) of the server to communicate with all
the GPUs. For each of them, the corresponding CUDA context is linked to one
and only one OpenMP thread. The affinity of each thread is essential and is
achieved with respect to the CPUs locations according to the server topology.
Thus, a thread in charge of communicating with a GPU is necessarily placed
on a physical core of the CPU that has a direct physical link with that GPU.
At the initialization step, each GPU is responsible for creating all the necessary
resources, especially allocating its brick cache and its page table. Then, each
OpenMP thread first communicates to its associated GPU the addressing sub-
space of the volume on which it must perform its part of the rendering. Each
thread can then independently manage the requests and the streaming of the
bricks to its associated GPU during the whole duration of the execution of the
interactive application.

3.4 Remote Rendering

In order to exploit resources offered by high-performance computing environ-
ments from lightweight devices, we propose to integrate a remote visualization
system in our method. Thus, after each rendering and compositing pass, the
resulted pixel buffer is directly compressed into an H.264 stream on a desig-
nated master GPU of the rendering server node. Then, the compressed buffer is
copied to the CPU before being sent over the network. A thin client that receives
the content of this H.264 stream, decompress it and simply display the result
in an interactive display environment. This configuration allows us to provide
a single pipeline that can be seen as an in-situ solution in the sense that the
visualization can be done on a standard PC in place of the data acquisition.
However, this requires sending all the acquired data to the remote rendering
server where they are then handled for a pre-processing step. This step only
includes the creation of the bricked multi-resolution representation of the 3D
volume. The creation of page table entries is done on the fly as needed during
the visualization. The initialization of our virtual addressing structure on the
different GPUs only consists of allocating the necessary texture memory space
for the different cache levels.

4 Results

The results presented here, were obtained on a NVidia Quadro VCA rendering
server. It consists of a single computing node containing eight Quadro P6000
GPUs with 24 GB of VRAM, two CPUs Intel Xeon E5-2698 2.2 GHz and 256 GB
of RAM. The display is performed on a full HD viewport 1920 × 1080. To
illustrate the results, we used two datasets:



628 J. Sarton et al.

Fig. 2. Out-of-core multi-GPUs volume ray-casting FPS. Average FPS accord-
ing to two different zoom level for both data sets. (a) For a medium zoom at an
intermediate level of detail (see Fig. 3(a, c)). (b) For a high zoom level with a highly
detailed full-screen volume (see Fig. 3(b, d)). The averages are calculated on measure-
ments taken over the entire duration of a scenario of several camera rotations around
the volume.

– Hippocampus: a 2160 × 2560 × 1072 volume with grayscale 16-bits voxels
(11.8 GB) of a primate hypocampus from a light sheet microscope.

– Tera Mouse Brain: a 64000× 50000× 114 volume with RGBA 32-bits voxels
(1.45 TB) of a histological slices stack of a mouse brain.

The evaluation is based on these two datasets with 643 voxels bricks. In
addition, the bricks of the Tera Mouse brain volume are stored on disk, cached
on CPU and transferred to the GPU with 2563 voxels, which includes 43 bricks
of 643 voxels.

4.1 Display Frequency

Figure 2 shows the average FPS, based on the number of GPUs used, for two
different zoom level. These results were obtained by measuring the number of
frames per second over the entire duration of an interactive scenario involving
several rotations of an orbital camera around the volume. The results are, among



Distributed Out-of-Core Volume Rendering of Massive Dataset 629

Fig. 3. Rendering illustrations. Rendering of the Hippocampus dataset (a, b) and
the Tera Mouse brain dataset (c, d) at two different level of detail.

other things, dependent on the defined transfer function. Here, the transfer func-
tions are chosen to provide an interesting visualization independently for both
datasets.

First, we can note that the behavior of our system is the same for both
datasets and, the number of FPS are almost the same. This allows us to show that
the performance of our approach does not depend on the input size of the volume
to be visualized. The difference between the FPS for the two datasets is actually
due to the different transfer function used. With a single GPU, we already achieve
interactive visualization time. We also see the gain brought by the multi-GPUs
system for the global rendering time. However, there is a significant drop in
performance beyond four GPUs. It is due to the topology of the server node
where four GPUs are connected to one CPU while the other four are connected
to another CPU. According to this topology, four GPUs are not in the same
address space as the master one. In this scenario, it is not possible to take
advantage of direct GPU to GPU communications with CUDA peer-to-peer and
UVA, for these GPUs. The communications with the master GPU are therefore
made by explicit transfers, passing through the CPU and crossing a QPI port
between the two processors. In order to validate this analysis, Fig. 4, provides
details of the different steps required for rendering. We can see the impact of



630 J. Sarton et al.

these transfers on the overall rendering time. This behavior could be fixed by
using compute nodes that provide direct communication between all GPUs, with
the NVLink technology of NVidia for instance.

Fig. 4. Analysis of the different step of the rendering. These measurements
represent the time required for the different rendering steps according to the number
of GPUs for the Tera Mouse brain dataset. (a) For a high zoom with full-screen vol-
ume display at a high level of detail (see Fig. 3(d)). (b) For a medium zoom with an
intermediate level of detail (see Fig. 3(c))

4.2 Data Loading

Figure 5 shows the results obtained by evaluating the data loading time in our
multi-GPUs out-of-core management context. This evaluation is done on the
loading of all the needed bricks of a complete HD view, in a worst-case scenario,
from empty GPU and CPU caches. All the data are therefore only present on
the server disk and stored with compression. The trend of these curves shows
that the data loading time is greatly reduced by the number of GPUs used for
rendering, from few seconds for a single GPU to one second or less with eight
GPUs. Indeed, our sort-last rendering solution allows distributing the bricks
loading on the different GPUs. Moreover, these values are once again mostly the
same for both datasets although their dimensions are very different.



Distributed Out-of-Core Volume Rendering of Massive Dataset 631

Fig. 5. Loading time of a complete HD viewport in a worst-case scenario.
These measurements represent the loading times of all the bricks required to generate
the complete HD viewport presented in Fig. 3(b) and (d), based on the number of
GPUs used, for the two datasets. They are obtained in a worst-case scenario, with
empty GPU and CPU caches.

5 Conclusion and Future Work

In this paper, we have presented a method that proposes a solution to allow
in-situ visualization of high dimension volume data. We use an out-of-core app-
roach, based on an efficient virtual addressing system and a GPU caching mech-
anism, to handle very large volumes of data, in a context of remote parallel
volume rendering. The distribution of our out-of-core model is combined with a
sort-last ray-guided volume renderer in a multi-GPUs single node environment.
This method reduces the main bottleneck of on-demand data streaming, from
mass storage to GPU, used by out-of-core approaches to handle data exceeding
GPU and CPU memory. The overall data block loading response is accelerated
by distributing the charge across all GPUs. In addition, the balancing of the
rendering workload allows a smooth interactive visualization. These results are
observed on data exceeding terabyte on a server with 8 GPUs. The use of a
multi-resolution page table, introduced by Hadwiger for out-of-core addressing
of large volumes of data on GPUs, is particularly well suited for very large vol-
umes of data. Moreover, we can conclude with this paper that this structure is
also efficient and particularly well suited for the use in a distributed environ-
ment on a multi-GPU multi-CPU single node and that its behavior allows to
visualize volumes exceeding the terabyte remotely on standard PC. The pro-
posed out-of-core structure opens up a broad application framework allowing
complete support of the all pipeline from data acquisition through processing to
interactive visualization. We could then consider performing all these steps with



632 J. Sarton et al.

our virtual addressing structure to propose an efficace in-situ solution allowing
to remotely visualize the data during their acquisition and not only after their
acquisition.

Acknowledgments. This work is supported by the French national funds
(PIA2’program “Intensive Computing and Numerical Simulation” call) under contract
No. P112331-3422142 (3DNeuroSecure project). We would like to thank all the part-
ners of the consortium led by Neoxia, the three French clusters (Cap Digital, System-
atic and Medicen), Thierry Delzescaux and the Mircen team (CEA, France) for the
two datasets as well as the Centre Image of the University of Reims for the VCA server
used.

References

1. Beyer, J., Hadwiger, M., Pfister, H.: State-of-the-art in GPU-based large-scale
volume visualization. Comput. Graph. Forum 34(8), 13–37 (2015). https://doi.
org/10.1111/cgf.12605

2. Beyer, J., Hadwiger, M., Schneider, J., Jeong, W.K., Pfister, H.: Distributed teras-
cale volume visualization using distributed shared virtual memory. In: 2011 IEEE
Symposium on Large Data Analysis and Visualization (LDAV), pp. 127–128, Octo-
ber 2011. https://doi.org/10.1109/LDAV.2011.6092332

3. Crassin, C., Neyret, F., Lefebvre, S., Eisemann, E.: GigaVoxels: ray-guided stream-
ing for efficient and detailed voxel rendering. In: Proceedings of the 2009 Sympo-
sium on Interactive 3D Graphics and Games, pp. 15–22. ACM (2009). http://dl.
acm.org/citation.cfm?id=1507152

4. Fogal, T., Schiewe, A., Kruger, J.: An analysis of scalable GPU-based ray-guided
volume rendering. In: 2013 IEEE Symposium on Large-Scale Data Analysis and
Visualization (LDAV), pp. 43–51, October 2013. https://doi.org/10.1109/LDAV.
2013.6675157

5. Fogal, T., Childs, H., Shankar, S., Krüger, J., Bergeron, R.D., Hatcher, P.: Large
data visualization on distributed memory multi-GPU clusters. In: Proceedings of
the Conference on High Performance Graphics, HPG 2010, Eurographics Associa-
tion, Aire-la-Ville, Switzerland, pp. 57–66 (2010). http://dl.acm.org/citation.cfm?
id=1921479.1921489

6. Gobbetti, E., Marton, F., Guitián, J.A.I.: A single-pass GPU ray casting framework
for interactive out-of-core rendering of massive volumetric datasets. Vis. Comput.
24(7–9), 797–806 (2008). https://doi.org/10.1007/s00371-008-0261-9

7. Hadwiger, M., Beyer, J., Jeong, W.K., Pfister, H.: Interactive volume exploration
of petascale microscopy data streams using a visualization-driven virtual memory
approach. IEEE Trans. Vis. Comput. Graph. 18(12), 2285–2294 (2012). https://
doi.org/10.1109/TVCG.2012.240

8. Kruger, J., Westermann, R.: Acceleration techniques for GPU-based volume ren-
dering. In: Proceedings of the 14th IEEE Visualization 2003 (VIS 2003), p. 38.
IEEE Computer Society, Washington (2003). https://doi.org/10.1109/VIS.2003.
10001

9. Levoy, M.: Display of surfaces from volume data. IEEE Comput. Graph. Appl.
8(3), 29–37 (1988). https://doi.org/10.1109/38.511

10. Levoy, M.: Efficient ray tracing of volume data. ACM Trans. Graph. 9(3), 245–261
(1990). https://doi.org/10.1145/78964.78965

https://doi.org/10.1111/cgf.12605
https://doi.org/10.1111/cgf.12605
https://doi.org/10.1109/LDAV.2011.6092332
http://dl.acm.org/citation.cfm?id=1507152
http://dl.acm.org/citation.cfm?id=1507152
https://doi.org/10.1109/LDAV.2013.6675157
https://doi.org/10.1109/LDAV.2013.6675157
http://dl.acm.org/citation.cfm?id=1921479.1921489
http://dl.acm.org/citation.cfm?id=1921479.1921489
https://doi.org/10.1007/s00371-008-0261-9
https://doi.org/10.1109/TVCG.2012.240
https://doi.org/10.1109/TVCG.2012.240
https://doi.org/10.1109/VIS.2003.10001
https://doi.org/10.1109/VIS.2003.10001
https://doi.org/10.1109/38.511
https://doi.org/10.1145/78964.78965


Distributed Out-of-Core Volume Rendering of Massive Dataset 633

11. Marchesin, S., Mongenet, C., Dischler, J.M.: Multi-GPU Sort-last volume visual-
ization. In: Proceedings of the 8th Eurographics Conference on Parallel Graphics
and Visualization, EGPGV 2008, pp. 1–8. Eurographics Association, Aire-la-Ville
(2008). https://doi.org/10.2312/EGPGV/EGPGV08/001-008

12. Max, N.: Optical models for direct volume rendering. IEEE Trans. Visual. Comput.
Graph. 1(2), 99–108 (1995). https://doi.org/10.1109/2945.468400

13. Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A sorting classification of parallel
rendering. IEEE Comput. Graph. Appl. 14, 23–32 (1994)

14. Moloney, B., Ament, M., Weiskopf, D., Moller, T.: Sort-first parallel volume render-
ing. IEEE Trans. Visualization Comput. Graph. 17(8), 1164–1177 (2011). https://
doi.org/10.1109/TVCG.2010.116

15. Müller, C., Strengert, M., Ertl, T.: Optimized volume raycasting for graphics-
hardware-based cluster systems. The Eurographics Association (2006). https://
doi.org/10.2312/EGPGV/EGPGV06/059-066

16. Porter, T., Duff, T.: Compositing digital images. In: Proceedings of the 11th Annual
Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1984,
pp. 253–259. ACM, New York (1984). https://doi.org/10.1145/800031.808606

17. Roettger, S., Guthe, S., Weiskopf, D., Ertl, T., Strasser, W.: Smart Hardware-
Accelerated Volume Rendering, p. 9 (2003)

18. Sarton, J., Courilleau, N., Remion, Y., Lucas, L.: Interactive visualization and on-
demand processing of large volume data: a fully GPU-based out-of-core approach.
IEEE Trans. Visual. Comput. Graph. 1 (2019). https://doi.org/10.1109/TVCG.
2019.2912752

19. Scharsach, H.: Advanced GPU Raycasting, pp. 69–76 (2005)
20. Stegmaier, S., Strengert, M., Klein, T., Ertl, T.: A simple and flexible volume

rendering framework for graphics-hardware-based raycasting, pp. 187–241, June
2005. https://doi.org/10.1109/VG.2005.194114

21. Zhang, J., Sun, J., Jin, Z., Zhang, Y., Zhai, Q.: Survey of parallel and dis-
tributed volume rendering: revisited. In: Gervasi, O., et al. (eds.) ICCSA 2005.
LNCS, vol. 3482, pp. 435–444. Springer, Heidelberg (2005). https://doi.org/10.
1007/11424857 46

https://doi.org/10.2312/EGPGV/EGPGV08/001-008
https://doi.org/10.1109/2945.468400
https://doi.org/10.1109/TVCG.2010.116
https://doi.org/10.1109/TVCG.2010.116
https://doi.org/10.2312/EGPGV/EGPGV06/059-066
https://doi.org/10.2312/EGPGV/EGPGV06/059-066
https://doi.org/10.1145/800031.808606
https://doi.org/10.1109/TVCG.2019.2912752
https://doi.org/10.1109/TVCG.2019.2912752
https://doi.org/10.1109/VG.2005.194114
https://doi.org/10.1007/11424857_46
https://doi.org/10.1007/11424857_46

	Distributed Out-of-Core Approach for In-Situ Volume Rendering of Massive Dataset
	1 Introduction
	2 Related Work
	3 Our Method
	3.1 Out-of-Core Approach
	3.2 Sort-Last Distributed Ray-Casting
	3.3 Multi-GPUs Virtual Addressing
	3.4 Remote Rendering

	4 Results
	4.1 Display Frequency
	4.2 Data Loading

	5 Conclusion and Future Work
	References




